\mathbf{r}	0	45	-	0	100
D	ч		5	u	3
v	U	L	U	U	U

(Pages: 3)

	16	
Vame		
	*	

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 3C 12-FUNCTIONAL ANALYSIS-I

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Prove or disprove : A sequence in a metric space is bounded in X iff it is Cauchy.
- 2. Show that the metric space l^{∞} is complete.
- 3. Define n^{th} Dirichlet Kernel D_n and evaluate $\int_{-\pi}^{\pi} D_n(t) dt$.
- 4. State Riesz's lemma.
- 5. Let Y be a subspace of a normed space X. Show that $Y^0 \neq \phi$ iff Y = X.
- 6. Illustrate with an example that a linear map on a linear space X may be continuous with respect to some norm on X, but discontinuous with respect to another norm on X.
- 7. Let X be an inner product space and $x \in X$. Show that $\langle x, y \rangle = 0$ for all $y \in X$ iff x = 0.
- 8. Show that if E and F are closed subsets of a Hilbert space H and E \(\ \ \ \ F \), then E + F is closed in H.
- 9. Let X be an inner product space. Show that if $E \subset X$ is convex, then there exists at most one best approximation from E to any $x \in X$.
- 10. Let X be a normed space over K. Let $\{a_1, a_2, ..., a_m\}$ be a linearly independent set in X. Show that there are $f_1, f_2, ..., f_m$ in X' such that $f_j(a_i) = \delta_{ij}, 1 \le i, j \le m$.

- 11. With usual notations, show that $C_c(T)$ is not closed in $C_o(T)$.
- 12. Define Schauder basis for a normed space X and show that if there is a Schauder basis for a normed space X, then X must be separable.
- 13. Show that the linear space Coo cannot be a Banach space in any norm.
- 14. State Uniform boundedness principle and interpret it geometrically.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Show that the set of all polynomials in one variable is dense in c([a, b]) with the sup metric.
- 16. Show that the metric space $L^p([a,b])$ is separable for $1 \le p < \infty$, but the metric space $L^\infty([a,b])$ is not separable.
- 17. Show that for all $x \in K^n$;

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{1}$$
 and

$$||x||_1 \le \sqrt{n} ||x||_2 \le n ||x||_{\infty}.$$

- 18. Let $X = K^3$ for $x = (x(1), x(2), x(3)) \in X$, let $||x|| = \left[(|x(1)|^2 + |x(2)|^2)^{\frac{3}{2}} + |x(3)|^3 \right]^{\frac{1}{3}}$. Show that $||x|| = \left[(|x(1)|^2 + |x(2)|^2)^{\frac{3}{2}} + |x(3)|^3 \right]^{\frac{1}{3}}$.
- 19. Let X and Y be normed spaces and Z be a closed subspace of X. Show that if $\tilde{F} \in BL(X/Z, Y)$ and we let $F(x) = \tilde{F}(x+z)$ for $x \in X$, then $F \in BL(X, Y)$ and $||F|| = ||\tilde{F}||$.
- 20. Show that if a non-zero Hilbert space H over K has a countable orthonormal basis then H is linearly isometric to K^n for some n, or to l^2 .
- 21. Let E be a non-empty closed convex sub-set of a Hilbert space H. Show for each $x \in H$, there exists a unique best approximation from E to x.

22. Let $X = K^2$ with the norm $\| \|_{\infty}$. Consider $Y = \{(x(1), x(2) \in X) : x(1) = x(2)\}$, and define $g \in Y'$ by g(x(1), x(2)) = x(1).

Show that the Hahn-Banach extensions of g to X are given by :

$$f(x(1), x(2)) = t x(1) + (1-t) x(2)$$
, where $t \in [0,1]$ is fixed.

- 23. Show that a normed space X is a Banach space iff every absolutely summable series of elements in X is summable in X.
- 24. Show that a subset E of a normed space X is bounded in X iff f(E) is bounded in K for every $f \in X'$ $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries 4 weightage.

- 25. Show that every finite dimensional subspace of a normed space X is closed in X.
- 26. Let $\{u_{\alpha}\}$ be an orthonormal set in a Hilbert space H. Show that $\{u_{\alpha}\}$ is an orthonormal basis for H iff space $\{u_{\alpha}\}$ is dense in H.
- 27. State and prove Hahn-Banach separation theorem.
- 28. Let X be a normed space and Y be a closed subspace of X. Show that X is a Banach space iff Y and $\frac{X}{Y}$ are Banach spaces in the induced norm and the quotient norm, respectively.

 $(2 \times 4 = 8 \text{ weightage})$