-	-
. 5 7	

(Pages: 3)

Ivaii	10	*************	********
Por	NIC		

THIRD SEMESTER M.Sc. DEGREE EXAMINATION DECEMBER 2015

(CUCSS)

Mathematics

MT 3C 14—LINEAR PROGRAMMING AND ITS APPLICATIONS

Time: Three Hours Maximum: 36 Weightage

Part A (Short Answer Type)

Answer all the questions.

Each question carries a weightage of 1.

- 1. Define convex set. Give an example for a convex set.
- 2. Prove that intersection of two convex sets is a convex set.
- 3. Prove that a Hyperplane is a convex set.
- 4. Is the function $f(x) = x^2$, $x \in \mathbb{R}$, a convex function. Justify your answer.
- 5. Distinguish between local and global extrema.
- 6. Define Lagrangian function and Lagrange multipliers.
- 7. Write the dual of the problem:

Minimize
$$z = x_1 + 3x_2$$
 subject to $x_1 + x_2 \ge 3$, $-x_1 + x_2 \le 2$, $x_1 - 2x_2 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$.

- 8. What is meant by loops in a transportation array?
- 9. What is meant by unbalanced transportation problem?
- 10. Describe the 0-1 variable problems in integer programming.
- 11. Define artificial variables. Describe the uses of artificial variables in solving linear programming problems.
- 12. Describe the concept of primal and dual problems in optimization theory.
- 13. Describe matrix games.
- 14. Describe the notion of dominance in game theory.

 $(14 \times 1 = 14 \text{ weightage})$

Part B (Paragraph Type)

Answer any **seven** questions. Each question carries a weightage of 2.

- 15. If S_F denote the set of feasible solutions of a general linear programming problem, then prove the a vertex of SF is a basic feasible solution.
- 16. Use the method of Lagrange multipliers to find the maxima and minima $x_2^2 (x_1 + 1)^2$ subject to $x_1^2 + x_2^2 \le 1$.
- 17. Find the relative maxima and minima and saddle points if any of: $f(x) = x_1^3 + x_2^3 3x_1 12x_2 + 25$
- 18. Define the dual of a linear programming problem. Prove that if the primal problem is feasible then it has an unbounded optimum if and only if the dual has no feasible solution, and vice versa
- 19. Find the point in the plane $x_1 + 2x_2 + 3x_3 = 1$ in E_3 which is nearest to the point (-1, 0, 1).
- 20. Discuss degeneracy in transportation problems.
- 21. Prove that the transportation problem has a triangular basis.
- 22. Describe the rectangular game as a Linear programming problem.
- 23. Write the general form of an integer linear programming problem.
- 24. Explain the terms mixed strategy, pure strategy and optimal strategies with reference to an matrix game.

 $(7 \times 2 = 14 \text{ weightage})$

Part C (Essay Type)

Answer any **two** questions.

Each question carries a weightage of 4.

25. Use simplex method to solve the problem:

Maximize
$$f(X) = 5x_1 + 3x_2 + x_3$$
 subject to the constraints $2x_1 + x_2 + x_3 = 3, -x_1 + 2x_3 = 4, x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

26. Solve the transportation problem for minimum cost starting with the degenerate solutio $x_{12} = 30$, $x_{21} = 40$, $x_{32} = 20$, $x_{43} = 60$.

	D ₁	D_2	D_3	THE STATE OF
01	4	5	2	30
O_2	4	1	. 3	40
03	3	6	2	20
04	2	3	7	60
	40	50	60	

27. Solve the following integer linear programming problem:

Maximize
$$\phi(X) = 3x_1 + 4x_2$$
; subject to $2x_1 + 4x_2 \le 13$,

$$-2x_1 + x_2 \le 2$$
, $2x_1 + 2x_2 \ge 1$, $6x_1 - 4x_2 \le 15$, $x_1, x_2 \ge 0$, x_1 and x_2 are integers.

28. Solve the game where the pay-off matrix is $\begin{pmatrix} 2 & 7 \\ 3 & 5 \\ 11 & 2 \end{pmatrix}$.

 $(2 \times 4 = 8 \text{ weightage})$