(Pages: 2)

Na	me	 ••••••	

Reg. No....

THIRD SEMESTER M.Sc. PROGRAMME DEGREE EXAMINATION DECEMBER 2015

(CUCSS)

Physics

PHY 3C 10-NUCLEAR AND PARTICLE PHYSICS

(2012 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions. Each has weightage 1.

- 1. Draw the binding fraction curve and explain its features.
- 2. What is parity? Explain its significance.
- 3. Nucleon-Nucleon force is charge independent. Justify the statement.
- 4. What are magic numbers? How will you account it with the help of shell model?
- 5. Explain how collective model explain nuclear rotations.
- 6. Explain Kurie plot.
- 7. Explain different types of nuclear reactions.
- 8. Distinguish between exoergic and endoergic nuclear reactions. Define Q value of a nuclear reaction.
- 9. What are the characteristics of nuclear fission?
- 10. Illustrate nuclear fusion process with an example.
- 11. What is strangeness? Explain conservation of strangeness.
- 12. Briefly explain Quarks flavours and colours.

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any **two** questions. Each has weightage 6.

- 13. Discuss in detail Proton-Proton Scattering at low energies.
- 14. Derive an expression for the total magnetic moment of the nucleus and explain it with the help of Schmidt diagram.
- 15. Account parity violation in β decay and describe an experiment to verify it.
- 16. What is an endoergic reaction? Derive an expression for the Threshold energy of an endoergic reaction.

 $(2 \times 6 = 12 \text{ weightage})$ Turn over

Section C

Answer any four questions. Each has weightage 3.

17. Compute the total binding energy and binding energy per nucleon for :

(a) $^{7}\alpha_{i}$.

(b) 20 Ne.

(c) 56 Fe.

(d) ^{235}u

18. Predict angular momenta and parities for the ground state of ¹²C, ¹¹B, ¹⁷O and ¹⁶N using model of nucleus.

19. Show that in the β transformation ${}_{z}^{A}X \rightarrow {}_{z+1}^{A}Y + \overline{\beta} + \overline{\nu}$ the Kinetic energy of the recoil nucle

given by $E_y = \frac{(Q + 2m_o C^2) E_m}{2M_y C^2}$.

20. Calculate threshold energy required to initiate the reaction $^{31}P(n,p)$ ^{31}Si . Also calculate maximum energy of β -decay of ^{31}Si + ^{31}P . Given $M_p = 1.00814$ amu Mu = 1.00898 and Mp = 30.98356 and Msi = 30.98515 amu.

21. Analyse the following decays or reactions for possible Violation of the basic conservation law

(a)
$$K^+ \to \pi^+ + \pi^+ + \pi^{\circ} + \pi^-$$
.

(b)
$$K^+ \to \pi^+ + e^+ + \mu^-$$
.

(c)
$$\wedge_{+}^{\circ} p \rightarrow \Sigma^{+} + n$$

(d)
$$\wedge^{\circ} \rightarrow p + k^{-}$$
.

(e)
$$\Sigma^+ \rightarrow n + e + v_e$$
.

22. Analyse the following decays according to their quark content.

(a)
$$\Omega^- \to \wedge^{\circ} + k^-$$

(b)
$$k^+ \rightarrow \pi^+ + \pi^\circ$$
.

(c)
$$\equiv \rightarrow \wedge^{\circ} + \pi^{-}$$
.

(d)
$$\wedge_c^+ \to p + \overline{k}^\circ$$
.