D	9	1	6	0	2

(Pages: 2)

		>				
Name	4	3.4	9	•	•••	

Reg. No.....

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Physics

PHY 3C 09-QUANTUM MECHANICS

(2012 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. A system is subjected to a perturbation which lasts from time t = 0 to $t = t_0$ and which is constant during this time. What is the transition probability?
- 2. Explain the principle of WKB approximation.
- 3. Distinguish between Normal and Anomalous Zeeman effects?
- 4. Distinguish between Symmetric and antisymmetric functions.
- 5. What is electric dipole transition moment? Give its significance.
- 6. Why is it easier to obtain laser action at the infrared wavelengths compared to visible region?
- 7. Give two important properties of Dirac matrices.
- 8. Explain what is meant by Dirac Spin matrices.
- 9. Explain the concept of change conjugation.
- 10. Define Symmetric and antisymmetric wave functions.
- 11. Discuss the principles of variational method.
- 12. Explain the basic principle of Canonical quantization of fields.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any two questions.

Each question carries 6 weightage.

- 1. Use the variational method to estimate the ground state energy of the Helium atom.
- Show that a hydrogen atom in its first excited state behaves as though it has permanent electric dipole moment that can be oriented in three different ways.

Turn over

- 3. Obtain the Hamiltonian operator for a charged particle in an electromagnetic field.
- 4. Discuss the Hartree's self consistent field method for a many electron system.

 $(2 \times 6 = 12 \text{ weightag})$

Part C

Answer any four questions.

Each question carries 3 weightage.

- 1. Use the WKB approximation to calculate the energy levels of a spin less particle of mass m moving in a one dimensional box with walls at x = 0 and x = L.
- 2. An unperturbed two level system has energy Eigen values E_1 and E_2 and Eigen functions
 - and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ When perturbed its Hamiltonian is represented by $\begin{pmatrix} E & A \\ A* & E_2 \end{pmatrix}$. Find the first order a second order correction to E_1 .
- 3. Calculate the rates of stimulated and spontaneous emission for the transition $3P \rightarrow 2S$ (H α line) hydrogen atom, taking the atoms are at a temperature of 1000 K.
- 4. A harmonic oscillator in the ground state is subjected to a perturbation $H^1 = -x \exp\left(\frac{-t^2}{t_0^2}\right)$ fr t = 0 to $t = \infty$. Calculate the probability for transition from the ground state, given.
- 5. Explain the properties of Dirac matrices.
- 6. N non-interacting bosons are in a infinite potential well defined by V(x) = 0 for $0 < x < V(x) = \infty$ for x < 0 and for x > a. Find the ground state energy of the system. What would be t ground state energy if the particles are fermions.

 $(4 \times 3 = 12 \text{ weighta})$