D	91	GO	A
v	UL	UU	-

(Pages: 2)

Name	3	 3
Dog	ATa	

OA

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Physics

PHY 3C 11—SOLID STATE PHYSICS

(2012 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. What are Miller indices? How are they determined?
- 2. What is the structure of Germanium and Silicon? How many molecules per unit cell are there?
- 3. What is the difference between a crystal lattice and reciprocal lattice?
- 4. Explain Ionic cohesive energy.
- 5. Define relaxation time and collision time of free electrons in metals.
- 6. What is an infinite potential well?
- 7. What are Brillouin zones? How are they related to the energy of an electron in a metal?
- 8. Explain Neel's theory of antiferromagnetism.
- 9. Distinguish between hard and soft magnetic materials.
- 10. What are ferrites? In what ways are they superior to ferromagnetic materials?
- 11. What are cooper pairs? Where are they formed?
- 12. At what temperature the band gap of a superconductor vanish? Why?

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **two** questions. Each question carries 6 weightage.

- 1. Explain Packing density or packing factor in crystals. Show that the packing factor for bcc and fcc structures are $\sqrt{3\pi/8}$ and $\sqrt{2\pi/6}$ respectively.
- 2. Deduce Weidmann and Franz law. Explain its significance.

- 3. Discuss the Kronig-Penney model for the motion of an electron in a periodic potential. What is meant by density of energy states?
- 4. Derive the London equations and explain how its solutions accounts Meissner effect.

 $(2 \times 6 = 12 \text{ weightage})$

Part C

Answer any four questions. Each question carries 3 weightage.

- 1. Prove that the reciprocal lattice for a bcc lattice is a fcc structure.
- 2. Show that the number of Frenkel defects in equilibrium at a given temperature is proportional to $(NN_2)^{1/2}$ where N is the number of atoms and N_2 be the interstitial atoms.
- 3. Calculate the Debye temperature for diamond given Young's modulus = 10^{12} N/m² and density = 3500 kg/m³.
- 4. The critical temperature T_c for mercury with isotopic mass 199.5 is 4.185 K. Calculate the critical temperature when its isotopic mass changes to 203.4.
- 5. What is a Bohr Magneton? A typical magnetic field achievable with an electromagnet with iror core is $10^4 G$. Compare the magnetic interaction energy μ H of an electron spin magnetic dipole moment with $K_B T$ at room temperature and show that at ordinary temperature the approximation

$$\frac{K_BT}{\mu H} >> 1$$
 is valid.

6. What is London Penetration depth? The London Penetration depths for Pb at 3 K and 7.1 K are respectively 39.6 nm and 173 nm. Calculate its transition temperature as well as Penetration depth at OK.

 $(4 \times 3 = 12 \text{ weightage})$