-	-	1	0	0
114		7	ч	h
0	_	U	U	U

(Pages: 3)

Nam	e
	obecast of X last. El
Reg.	No

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2015

(CUCSS)

Mathematics

MT 3C 13-TOPOLOGY-II

me : Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Prove that, if a product is non-empty, then each projection is onto.
- 2. Let τ be the product topology on the set $\prod_{i \in I} X_i$ where $\{(X_i, \tau_i) : i \in I\}$ is an indexed collection of topological spaces. Prove that the family of all subsets of the form $\pi_i^{-1}(V_i)$ for $V_i \in \tau_i$, $i \in I$ is a subbase for τ .
- \blacksquare Prove that a topological product is T_0 if each coordinate space is T_0 .
- Let $X = \prod_{i \in I} X_i$ where each X_i is a topological space and let $x \in X$. Suppose $\{x_n\}$ is a sequence in

X with the property that for each $i \in I$, the sequence $\{\pi_i \ x_n\}$ converges to $\pi_i(x)$ in X_i . Prove that $\{x_n\}$ converges to x in X.

- 5. Prove that the evaluation function of a family of functions is one-to-one if and only if that family distinguishes points.
- 6. Give an example of a second countable Hausdorff space which is not metrizable.
- Prove that in a simply connected space, any two points having the same initial and final points are path homotopic.
- 8. Show that if $p: E \to B$ is a covering map, then p is an open map.
- 9. Prove that the map $p: S' \to S'$ given by $p(z) = z^2$ is a covering map.
- Prove that a continuous real-valued function on a countably compact space is bounded and attains its extrema.
- Prove that a first countable countably compact space is sequentially compact.

Turn over

- 12. Let X be Hausdorff and locally compact at a point x in X. Prove that the family of companies neighbourhoods of x is a local base at x.
- 13. Let A be a subset of a metric space (X, d) such that A is complete with respect to the metric induces on it. Prove that A is closed in X.
- 14. Prove that the set of irrationals is of second category in the real line R with the usual topology. $(14 \times 1 = 14 \text{ mark})$

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Prove that any continuous real-valued function on a closed subset of a normal space can be extended continuously to the whole space.
- 16. Let $\{X_i : i \in I\}$ be an indexed family of sets and let $X = \prod_{i \in I} X_i$. Prove that a subset of X is a box and only if it is the intersection of a family of walls.
- 17. Let S be a subbase for a topological space X. Prove that X is completely regular if and only if f each $V \in S$ and for each $x \in V$, there exists a continuous function $f: X \to [0,1]$ such that f(x) = 0 and f(y) = 1 for all $y \notin V$.
- 18. Let $\{f_i: X \to Y_i \mid i \in I\}$ be a family of functions which distinguishes points from closed sets in Prove that the corresponding evaluation function $e: X \to \prod_{i \in I} Y_i$ is open when regarded as a function f(x) from f(x) onto f(x).
- 19. Prove that path homotopy (=p) is an equivalence relation on the set of paths in a topologic space X.
- 20. Let $P: E \to B$ be a covering map and let $p(e_0) = b_0$. Prove that any path $f: [0,1] \to B$ beginning at b_0 has a lifting to a path \tilde{f} in E beginning at e_0 .
- 21. Prove that a subset of Euclidean space is compact if and only if it is closed and bounded.
- 22. Among all Hausdorff compactifications of a Tychonoff space, prove that the stone-ce compactification is the largest compactification upto a topological equivalence.
- 23. Prove that every compact metric space is complete.
- 24. Prove that the function $e: \hat{X} \times \hat{X} \to \mathbb{R}$ defined by $e([\hat{x}], [\hat{y}]) = \lim_{n \to \infty} d(x_n, y_n)$ (where $\hat{x} = \{x\}$ and $\hat{y} = \{y_n\}$) is a metric on X, where (X, d) is a metric space.

Part C

Answer any **two** questions. Each question has weightage 4.

- 25. Prove that a product of spaces is connected if and only if each co-ordinate space is connected.
- 26. State and prove Urysohn's metrization theorem.
- 27. Prove that the fundamental group of the circle is infinite cyclic.
- 28. Prove that a topological space is compact if and only if there exists a closed sub-base \mathcal{C} for X such that every family of \mathcal{C} having the finite intersection property has a non-empty intersection.

 $(2 \times 4 = 8 \text{ weightage})$