Name										
Reg.	N	0								

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(CUCSS - PG)

(Mathematics)

CC15P MT3 C12 - FUNCTIONAL ANALYSIS I

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all Questions
Each question carries 1 weightage

- 1. Show that every convergent sequence in a metric space is Cauchy.
- 2. Let X and Y be normed spaces and $F: X \to Y$ be a linear map, then prove that if F is bounded on $\overline{U}(0,r)$ for some r, then $||F(x)|| \le \alpha ||x||$, $\forall x \in X$ and some $\alpha > 0$.
- 3. Define the n^{th} Dirichlet Kernel D_n and evaluate $\int_{-\pi}^{\pi} D_n(t) dt$.
- 4. Show that the norm function on a normed linear space is continuous.
- 5. Let $1 \le p < r \le \infty$. Prove that l^r is not contained in l^p .
- 6. Give an example of a discontinuous linear map from a normed space in to a normed space .
- 7. State and prove Schwarz inequality.
- 8. State Gram-Schmidt orthonormalization theorem.
- 9. Show that among all the l^p -spaces, $1 \le p \le \infty$ only l^2 is an inner product space .
- 10. Give an example of an uncountable orthonormal basis for a Hilbert space.
- 11. Let X be an inner product space. Show that if $E \subset X$ is convex then there exist at most one best approximation from E to any $x \in X$.
- 12. Let X be a normed space over K. Let $\{a_1, a_2, \dots, a_m\}$ be a linearly independent set in X. Show that there are f_1, f_2, \dots, f_m in X' such that $f_i(a_i) = \delta_{ij}$, $1 \le i, j \le m$.
- 13. Show that a Banach space cannot have a denumerable basis.
- 14. State uniform boundedness principle.

 $(14\times1=14 \text{ weightage})$

Part B

Answer **any 7** Questions. Each question carries 2 weightage

- 15. Show that set of all polynomials in one variable is dense in C([a, b]) with the sup metric.
- 16. Let $x \in L'[-\pi, \pi]$. Show that $\widehat{x}(n) \to 0$ as $n \to \mp \infty$ where $\widehat{x}(n)$ denotes the n^{th} Fourier coefficient of x.

1

- 17. Let X be a normed space. Then show that the following conditions are equivalent.
 - (a). Every closed and bounded subset of X is compact.
 - (b). The subset $\{x \in X : ||x|| \le 1\}$ of X is compact.
 - (c). X is finite dimensional.
- 18. Show that linear functional f on a normed space X is continuous iff Z(f) is closed in X.
- 19. State and prove Bessel's inequality.
- 20. Let X be an inner product space, $\{u_1, u_2, \dots \dots\}$ be a countable orthonormal set in X and $k_1, k_2, \dots \in K$. If X is a Hilbert space and $\sum_n |k_n|^2 < \infty$, then prove that $\sum_n k_n u_n$ converges in X.
- 21. Let X=C([-1,1]), $x(t) = 1 t^2$, $x_0(t) = 1$, $x_1(t) = \cos \pi t$ for $t \in [-1,1]$. Show that the best approximation to x from span $\{x_0, x_1\}$ is $\frac{2}{3} + \frac{4x_1}{\pi^2}$.
- 22. Let $X = K^2$ with the norm $\| \|_{\infty}$. Consider $Y = \{(x(1), x(2) \in X) : x(1) = x(2)\}$, and define $g \in Y$ by g(x(1), x(2)) = x(1). Show that Hahn –Banach extensions of g to X are given by : f(x(1), x(2)) = t x(1) + (1 t)x(2), where $t \in [0, 1]$ is fixed.
- 23. Show that a normed space X is a Banach space iff every absolutely summable series of elements in X is summable in X.
- 24. Let X be a normed space. Then show that for every subspace Y of X and every $g \in Y'$, there is a Unique Hahn –Banach extension of g to X if and only if X' is strictly convex.

 $(7 \times 2 = 14 \text{ weightage})$

Part C Answer any 2 Questions. Each question carries 4 weightage

- 25. Let E be a measurable subset of R . Show that for $1 \le p \le \infty$, the metric space $L^p(E)$ is complete.
- 26.Let H be a nonzero Hilbert space over K . Then prove that following conditions are equivalent.
 - (i) H has a countable orthonormal basis.
 - (ii) H is linearly isometric to K^n for some n, or to l^2 .
 - (iii) H is separable.
- 27. State and prove Hahn Banach separation theorem.
- 28. Let $X = \{x \in C([-\pi, \pi]): x(\pi) = x(-\pi)\}$ with the sup norm. Show that the Fourier series of every X in a dense subset of X diverges at 0.

 $(2 \times 4=8 \text{ weightage})$
