1	5	P	2	n	1
_	J		J	v	

(Pages:2)

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016 (CUCSS - PG)

(Mathematics)

CC15P MT3 C14 - LINEAR PROGRAMMING AND ITS APPLICATIONS

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

PART A

Answer All Questions. Each question has weightage 1

- 1. Define polytope and give an example for polytope with one vertex.
- 2. Prove that all internal points of a convex set *K* themselves constitute a convex set.
- 3. Define Convex hull with example..
- 4. Find H(x) for $f(x) = x_1^3 + 2x_2^3 + 3x_1x_2x_3 + x_3^2$
- 5. Find the directional derivative of $f(x) = 6x_2^2 18x_2x_3 6x_3x_1 + 2x_1x_2 7x_1 + 5x_2 6x_3 4$ at X_0 in the direction of the vector $Y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}'$
- 6. Define convex functions.
- 7. Define feasible solutions and basic feasible solutions
- 8. Prove that dual of the dual is primal.
- 9. Define Transportation matrix with example.
- 10. Define loop in transportation array.
- 11. Define triangular basis.
- 12. Differentiate between ILP and MILP.
- 13. Define pure strategy and mixed strategy.
- 14. Find the optimal strategy and value of the game $\begin{bmatrix} 2 & -1 & -2 \\ 1 & 0 & 1 \\ -2 & -1 & 2 \end{bmatrix}$.

(14×1=14 Weightage)

PART B

Answer any Seven Questions. Each question has weightage 2.

- 15. Prove that the convex polyhedron is a convex set.
- 16. Let f(X,Y) be such that both $\max \min f(X,Y)$ and $\min \max f(X,Y)$ exist. Then prove that the necessary and sufficient condition for the existence of saddle point (X_0, Y_0) of f(X,Y) is that $f(X_0, Y_0) = \max \min f(X,Y) = \min \max f(X,Y)$
- 17. Find the relative maxima and minima and saddle points, if any, of

$$f(x) = x_1^3 + x_2^3 - 3x_1 - 12x_2 + 25.$$

- 18. Examine $f(x) = x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 16x_2x_3$ for relative extrima.
- 19. Prove that a vertex of S_F is a basic feasible solution.

- 20. Prove that the optimum value of f(x) of the primal, if it exists, is equal to the optimum value of $\varphi(Y)$ of the dual.
- 21. Explain Caterer problem.
- 22. Describe a rectangular game as an LP problem
- 23. Solve the game with the given payoff matrices $\begin{bmatrix} 2 & 7 \\ 3 & 5 \\ 11 & 2 \end{bmatrix}$.
- 24. Given $x_{13} = 50$ units, $x_{14} = 20$ units, $x_{21} = 55$ units, $x_{31} = 30$ units, $x_{32} = 35$ units and $x_{34} = 25$ units. Is it an optimal solution to the transportation problem.

Available Units:

[6	1	9	3]	70
6 11 10	5	2	3 8 7	55
10	12	4	7	90

Required units: 85 35 50 45

If not, modify it to obtain a better feasible solution

(7×2=14 Weightage)

PART C

Answer any Two Questions. Each question has weightage 4.

- 25. Solve graphically the game whose pay off matrix is $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$.
- 26. Explain cutting plane method. And solve the problem $maximize \ 3x_1 + 4x_2 \ Subject \ to \ 4x_1 + 3x_2 \ge 12, \ x_1 + 2x_2 \le 2, \ x_1, x_2 \ge 0.$
- 27. Prove that if a set K is non empty, closed, bounded and convex, then (i) K has at least one vertex (ii) every point of K is a convex linear combination of its vertices.
- 28. Find the maximum and minimum values of $|X|^2$, $X \in E_3$ subject to the constraints

$$g_1(X) = \frac{x_1^2}{4} + \frac{x_2^2}{5} + \frac{x_3^2}{25} - 1 = 0, \qquad g_2(X) = x_1 + x_2 - x_3 = 0$$

(2×4=8 Weightage)
