15P306	(Pages: 2)	Name
		Reg. No

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOV. 2016

(CUCSS - PG) (Physics)

CC15P PHY3 C10 - NUCLEAR AND PARTICLE PHYSICS

(2015 Admission)

Time: Three Hours Maximum: 36 Weightage

Section-A

(Answer all Questions. Each question carries weightage one)

- 1. Write down the semi empirical mass formula and explain each terms.
- 2. In what ways n-p scattering differ from p-p scattering?
- 3. Distinguish between singlet and triplet potentials.
- 4. What is internal conversion? Explain conversion coefficient.
- 5. Outline Gamow-Teller selection rules.
- 6. Briefly explain parity violation in beta decay.
- 7. Mention the evidences for the existence of magic numbers.
- 8. What are singlet and triplet potentials?
- 9. Explain the concept of effective cross section in nuclear reaction.
- 10. What are the basic characteristics of nuclear fusion?
- 11. Briefly explain quark flavours and colours.
- 12. State the law of conservation of baryon and lepton numbers.

(12×1=12 Weightage)

Section-B

(Answer any two questions Each question carries weightage 6)

- 13. Give the quantum theory of the ground state of deuteron using a square well potential. Explain the observed spin, Magnetic moment and quadrupole moment of deuteron.
- 14. Using Fermi's Theory of β decay, explain allowed and forbidden β transitions.
- 15. Discuss the shell model of nucleus and predict the magic numbers. On this basis, what should be the spin and parity of the ground state of $_{7}N^{15}$.
- 16. Illustrate by taking examples, the different conservation laws followed by elementary particles. (2×6=12 Weightage)

Section - C

(Answer any four Questions. Each Question carries weightage three)

- 17. Show that the deuteron cannot have an excited bound state.
- 18. Calculate the total cross section for n-p scattering at neutron energy 2Mev (lab). Given a_t =5.38F, a_s =-23.7F, r_{et} =1.70F and r_{es} =2.40F.
- 19. Determine the spin, parity, magnetic moment and quadruple moment of $_{83}\mathrm{Bi}^{209}$
- 20. Energy released in the fission of U^{235} is 200MeV. What would be the quantity of U^{235} used per year in a 5MW reactor if the efficiency of conversion is 30%.
- 21. Calculate the Q value of the reaction: ${}_{1}H^{3}+{}_{1}H^{2}$ \longrightarrow ${}_{2}H^{4}+{}_{0}n^{1}$, masses are 3.01699824u, 2.01473614u, 4.00387274u and 1.00899324u respectively.
- 22. Explain why the following decay processes are not observed.

a) p+p
$$\longrightarrow$$
 K⁺ + Σ ⁺

b) p+n
$$\longrightarrow \Lambda^0 + \Sigma^+$$

c) p+n
$$\longrightarrow \Xi^- + K^+ + \Sigma^+$$

d)
$$\Xi^- \longrightarrow \Sigma^+ + \Lambda^0$$

(4×3=12weightage)
