ı	5	P	3	0	5	
٠	-	-	-	v	-	

(Pages:2)

Name	٠.	 				
Reg No						

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(CUCSS - PG) (Physics)

CC15P PHY3 C09 - QUANTUM MECHANICE-II

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

PART-A

Answer **all** questions
All questions carry 1 weightage

- 1. How time independent perturbation theory can be used to calculate eigen values.
- 2. In WKB approximation, why we need connection formula?
- 3. Discuss the validity of time independent perturbation theory.
- 4. How time dependent perturbation theory can used for explaining working of LASER.
- 5. What are the selection rules for dipole approximation.
- 6. Show that the functional defined as

$$E[|\psi\rangle] = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle}$$

is always greater than the ground state energy E_0 .

- 7. What are the drawbacks of Klein-Gorden equation.
- 8. How we can say that Dirac particles are spin half particles.
- 9. What are bilinear covariants.
- 10. Why we cannot use spin for neutrinos.
- 11. Why we should quantize the field.
- 12. Write down the expression for Lagrangian density of Schrödinger field and obtain Schrödinger equation.

PART B

Answer any **two** questions Each question carry 6 weightage

- 13. How time independent perturbation theory can be used to explain Stark effect. Levels undergoing splitting in Stark effect doesn't undergo splitting in Zeeman effect. Comment.
- 14. Obtain the expression for total transition probability for unit time when an atom interact with an electromagnetic field.
- 15. Obtain Weyls equation for neutrinos.
- 16. From Dirac equation obtain Paulis equation for electron. Explain spin orbit interaction.

PART-C

Answer any **four** questions Each question carries 3 weightage

- 17. Calculate the first order correction to the eigen values of a quartic oscillator.
- 18. For a particle moving under the potential

$$V(x) = \begin{cases} \infty & \text{for } x \le 0 \\ Kx & \text{for } x > 0 \end{cases}$$

calculate ground state energy by variation method. Use trial function $\psi = A x \exp \left(-\alpha x^2\right)$

- 19. Obtain energy levels of a particle moving under the potential V(x) = k|x| by WKB method.
- 20. Obtain Klein-Gorden equation from Dirac equation.
- 21. Show that $(\gamma \mu \gamma \nu + \gamma \nu \gamma \mu) = 2g\mu \nu$. Where γ are the Dirac matrices and $g\mu\nu$ is the metric tensor.
- 22. Show that $\psi \gamma^{\mu} \gamma^{\nu} \psi$ behaves as a second rank anti symmetric tensor under Lorentz transformation.
