- 31	112	237 C	2015	
1		\mathbf{n}	7	_
-		100		1

(Pages: 2)

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOV. 2016

(CUCSS - PG) (Statistics)

CC15P ST3 E06 - Time Series Analysis

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

PART A

(Answer all questions. Weightage 1 for each question.)

- 1. Define a time series and relate it with a discrete parameter stochastic process.
- 2. Define autocorrelation and auto covariance function of a time series.
- 3. What is spectral density function? What are its important properties?
- Define a Moving Average model of order q (MA(q)) and find the autocorrelation of MA(1) model.
- 5. Explain an autoregressive integrated moving average model. Write the form of an ARIMA(1,1,1) model.
- 6. Discuss on the stationarity of AR(1) model.
- 7. Obtain the spectral density of a first order moving average process.
- 8. Explain how differencing effects forecasting of a time series.
- 9. Obtain the ACF of an AR(1) process.
- 10. Explain a non-linear time series model with an illustrative example.
- 11. What is the role of periodogram in estimating spectral density?
- 12. Define ARCH model. Give an example to show its application in financial time series analysis.

 $(12 \times 1 = 12 \text{ Weightage})$

PART B

(Answer any eight questions. Weightage 2 for each question.)

- 13. Describe exponential smoothing method in the analysis of time series data.
- 14. Illustrate the moving average method of smoothing technique with an example. What are the characteristics and limitations of this method?
- 15. Derive the autocorrelation of $\{Y_t\}$, where $Y_t = \epsilon_t \epsilon_{t-1} + 0.6 \epsilon_{t-2}$ assuming $\{\epsilon_t\}$ as a white noise process.

- 16. For the AR(1) model $X_t = 0.5 X_{t-1} + \epsilon_t$, show that $X_t = 10(0.5)^t + \epsilon_t + 0.5 \epsilon_{t-1} + 0.5^2 \epsilon_{t-2} + \dots$ is a solution. Is it a stationary process?
- 17. Explain the method of finding the order of ARIMA(p,d,q) model in the analysis of a time series data.
- 18. Obtain Yule-Walker equation for a stationary AR (p) process.
- 19. Describe the role of residual analysis in model checking.
- 20. Discuss on the estimation of mean and autocovariance function under large sample theory.
- 21. Discuss the asymptotic properties of the maximum likelihood estimates of the parameters of ARMA model.
- 22. Describe the structure of correlogram of a (i) Stationary series (ii) Non stationary series.
- 23. Find the spectrum of an ARMA (p,q) model..
- 24. Define a GARCH(1,1) model and describe its properties.

 $(8 \times 2 = 16 \text{ weightage})$

PART C

(Answer any two questions. Weightage 4 for each question.)

- 25. Explain Holt winters smoothing method for multiplicative seasonality.
- 26. Define an ARMA(p, q) model and obtain the conditions for its stationarity.
- 27. Describe the least square estimation method of finding the parameter estimates of ARMA(p,q) model.
- 28. State and prove Herglotz theorem.

 $(2 \times 4 = 8 \text{ Weightage})$
