1	5	P3	n	2
1	J		w	J

(Pages:2)

Name		 					
Reg. No.							

THIRD SEMESTER M.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(CUCSS - PG)

(Mathematics)

CC15P MT3 C13 - TOPOLOGY II

(2015 Admission)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Prove that the intersection of any family of boxes is a box.
- 2. Define a cube and a Hilbert cube.
- 3. Let S be a sub base for a topological space X. Then show that X is completely regular if and only if for each $V \in S$ and for each $x \in V$, there exists a continuous function $f: X \to [0,1]$ such that f(x) = 0 and f(y) = 1 for all $y \notin V$.
- 4. Show that a topological product of spaces is Tychonoff if and only if each coordinate space is so.
- 5. Let $\{Y_i : i \in I\}$ be a family of sets, X be any set and for each $i \in I$, define $f_i : X \to Y_i$. Show that the evaluation function is the only function from X into ΠY_i whose composition with the projection $\pi_i : \Pi Y_i \to Y_i$ equals f_i for all $i \in I$.
- 6. Show that the evaluation function of a family of functions is one-to-one if and only if that family distinguishes points.
- 7. Define homotopy.
- 8. Let X be a space; and x_o be a point of X. Define the fundamental group of X relative to the base point x_o .
- 9. Define a covering space.
- 10. Show that the continuous image of a countably compact space is countably compact.
- 11. Define sequential compactness.
- 12. Prove that every locally compact, Hausdorff space is regular.
- 13. Describe the one-point compactification of a topological space X.
- 14. Prove that a finite union of totally bounded set is totally bounded.

(14 x1=14 weightage)

Part B

Answer any 7 questions.

Each question carries 2 weightage

- 15. Let A be a closed subset of a normal space X and suppose $f: A \to (-1,1)$ is continuous. Show that there exists a continuous function $F: X \to (-1,1)$ such that F(x) = f(x) for all $x \in A$
- 16. Let $X = \Pi X_i$, each X_i being a topological space. Suppose $\{x_n\}$ is a sequence in X and that $x \in X$. Prove that $\{x_n\}$ converges to x in X if and only if for each $i \in I$, the sequence $\{\pi_i(x_n)\}$ converges to $\pi_i(x)$ in X_i .
- 17. Define productive property. Show that T_2 is a productive property.
- 18. Prove that a product of topological spaces is path connected if and only if each coordinate space is path connected.
- 19. Prove that a topological space is completely regular if and only if the family of all continuous real-valued functions on it distinguishes points from closed sets.
- 20. Show that the evaluation function of a family of functions which distinguishes points from closed sets is open.
- 21. Show that the relation \simeq_p (path homotopy) is an equivalence relation.
- 22. Let X be a T₁ space. Prove that every infinite subset of X has an accumulation point if and only if every sequence in X has a cluster point.
- 23. Prove that a subspace of a locally compact, Hausdorff space is locally compact if and only if it is open in its closure.
- 24. Prove that every compact metric space is complete.

(7 x2=14 weightage)

Part C

Answer any **two** questions.

Each question carries 4 weightage

- 25. Prove that metrisability is a countably productive property.
- 26. Prove that a second countable space is metrisable if and only if it is T_3 .
- 27. State and prove Alexander Sub-base theorem.
- 28. Prove that the fundamental group of the circle is infinite cyclic.

(2 x4=8 weightage)
