1	5	P	2	n	1
1	J		J	v	1

(Pages: 2)

Name....

Reg. No.....

THIRD SEMESTER M.Sc DEGREE EXAMINATION NOVEMBER 2016-17

(CUCSS)

(Mathematics)

CC15PMT3C11- COMPLEX ANALYSIS

(2015 Admission)

Time: Three Hours

Max: 36 weightage

PART A

Answer ALL questions
Each question carries 1 weightage

- 1. Show that linear transformation preserves cross ratio.
- 2. If $T_1(z) = \frac{z+2}{z+3}$ and $T_2(z) = \frac{z}{z+1}$, find $T_1T_2(z)$, $T_2T_1(z)$.
- 3. Find the cross ratio of $(i, 0, -1, \infty)$.
- 4. Compute $\int_{V} x dz$ where γ is a directed line segment from 0 to 1+i.
- 5. State cauchy's theorem in a disc.
- 6. Prove that $n(\gamma, a)$ is a constant in each of the regions determined by γ .
- 7. State Weierstrass theorem on essential singularity.
- 8. Evaluate $\int_{|z|=1}^{\infty} \frac{e^z}{z} dz$.
- 9. Find the residues of the function $f(z) = \frac{e^z}{(z-a)^4}$ at z = a.
- 10. Prove that all the roots of $z^7 5z^3 + 12 = 0$ lies between the circles |z| = 1 and |z| = 2.
- 11. Define simply connected region. Give an example of a simply connected region.
- 12. Expand $\frac{1}{(z-1)(z-2)}$ as a laurentz series in the region 1 < |z| < 2.
- 13. Prove that sum of the elliptic function at its poles is zero.
- 14. Find the harmonic conjugate of the function e^x siny.

(14x1=14 weightage)

PART B

Answer any **SEVEN** questions Each question carries 2 weightage

- 15. Describe the mapping properties of $w = e^z$.
- 16. Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or on a straight line.

- 17. If f is a continuous complex valued function defined on [a,b], then prove that $\left| \int_a^b f(t) \, dt \right| \leq \int_a^b |f(t)| \, dt$.
- 18. Prove that a bounded entire function is constant.
- 19. If f(z) is analytic in Ω , then prove that $\int_{\gamma} f(z) dz = 0$ for every cycle γ which is homologues to zero in Ω
- 20. State and Prove Rouche's theorem.
- 21. State and Prove Hurwitz's theorem.
- 22. Evaluate $\int_0^\infty \frac{dx}{1+x^2}$.
- 23. Derive the Legendre relation $n_1\omega_2 n_2\omega_1 = 2\pi i$.
- 24. Show that any even elliptic function with periods ω_1 and ω_2 can be expressed in the form $C\prod_{k=1}^n\frac{P(z)-P(a_k)}{P(z)-P(b_k)}$ where C is a constant.

 $(7 \times 2 = 14 \text{ weightage})$

PART C Answer any TWO questions Each carries 4 weightage

- 25. State and prove Cauchy's theorem for a rectangle.
- 26. Derive Poisson's integral formula for harmonic function.
- 27. State and prove mean value property of harmonic functions.
- 28. Explain the construction of the modular function $\lambda(\tau)$ and show that λ is invariant under the congruence sub group modulo 2.

 $(2\times4=8 \text{ weightage})$
