-		1			
	0	0		1	-
	246		7		
C	U	diam's	U		

2

(Pages: 3)

Name	***********	************************
Reg. No		

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015 31

(CUCSS)

Mathemathics

MT 4C 15-FUNCTIONAL ANALYSIS-II

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Let P be a bounded linear map from a normed space X into itself. If P is a projection, then prove that the range space $\mathcal{R}(\mathcal{P})$ and the null space $\mathcal{Z}(\mathcal{P})$ are closed in X.
- 2. Give an example of a closed linear map between Banach spaces which is not open.
- 3. Let X and Y be Banach spaces and F be a bounded linear, bijective map from X to Y. Using closed graph theorem, prove that F^{-1} is a bounded linear map from Y to X.
- 4. Let X be Banach space. Prove that the set of all bounded invertible operators on X is an open subset of the set of all bounded operators on X.
- 5. If A is an invertible bounded operator on a normed space X, then prove that $\sigma(A^{-1}) = \{k^{-1} : k \in \sigma(A)\}$ where $\sigma(A)$ is the spectrum of A.
- 6. If X is a finite dimensional normed space, then prove that its eigen spectrum, approximate eigen spectrum and the spectrum are the same.
- 7. Define reflexive normed spaces and give an example of it.
- 8. Let $E = \{(x_1, x_2) \in \mathbb{R}^2 : x_1 = x_2\}$. Find E^{\perp} and prove that it is a closed subspace of the Hilbert space \mathbb{R}^2 .
- 9. Does projection theorem hold for incomplete inner product spaces? Justify your answer.
- 10. Prove that in a finite dimensional Hilbert space weak convergent sequences are convergent.
- 11. Let H be a Hilbert space and let A be a bounded operator on H. Prove that $||A|| = ||A^*||$.
- 12. Let H be a Hilbert space and let A be a bounded operator on H. Prove that the closure of $\mathcal{R}(A^*)$ equals $\mathcal{Z}(A)^{\perp}$, where $\mathcal{R}(A^*)$ is the range space of A^* and $\mathcal{Z}(A)$ is the null space A.

13. Let A be a normal operator on the Hilbert space H. If k is an eigen value of A, then prove th is an eigen value of A^* and the eigen vector of A corresponding to k is an eigen vector of corresponding to \overline{k} .

2

14. Give an example of a Hilbert-Schmidt operator on the Hilbert space l^2 .

 $(14 \times 1 = 14 \text{ weight})$

C 8

Part B

Answer any **seven** questions. Each question carries 2 weightage.

- 15. Let X be a normed space over \mathbb{C} and let $f: X \to \mathbb{C}$ be a linear map. Prove that f is closed if and if it is continuous.
- 16. Let X be a Banach space and let A be a bounded linear map on X. Prove that A is invertible if only if A is bounded below and the range of A is dense in X.
- 17. Let X be a Banach space over $\mathbb C$ and let A be a bounded operator on X. Prove that $\sigma(A)$ is a comsubet of $\mathbb C$.
- 18. Let X and Y be normed spaces and let F be a bounded linear map from X to Y. Prove that transpose F' of F is a bounded linear map from Y to X and ||F|| = ||F'||.
- 19. Prove that the dual X' of a reflexive normed space X is reflexive.
- 20. Let H be a Hilbert space and let F be a non-empty closed subspace of H. Prove that $H = F + \frac{1}{2}$
- Let H be a Hilbert space. Prove that the set of all normal operators on H is a closed subet of th of all bounded operators on H.
- 22. Let H be a Hilbert space and A be an operate on H. Prove that the spectrum of A is contained the closure of the numerical range $\omega(A)$.
- 23. Let A be a self adjoint operator on a finite dimensional Hilbert space H. Prove that every ro the characteristic polynomial of A is real.
- 24. Let A be a compact operator on a non-zero Hilbert space H. Prove that every non-zero approxine igenvalue of A is an eigenvalue of A.

 $(7 \times 2 = 14 \text{ weight})$

Part C

Answer any two questions.

Each question carries 4 weightage.

25. Let X be a non-zero Banach space over \mathbb{C} and A be a bounded linear map on X. Prove that spectrum of A is non-empty and its spectral radius r_{α} is:

$$r_{\sigma} = \lim_{n \to \infty} \|\mathbf{A}^n\|^{\frac{1}{n}}.$$

- 26. State and prove Riesz representation theorem for continuous linear functionals on a Hilbert space.
- 27. Let H be a Hilbert space over C and let A be a bounded linear map on H. Prove that:
 - (i) k is a special value of A if and only if \bar{k} is a spectral value of A*.
 - (ii) $\sigma_e(A) \subset \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \left\{ k : \overline{k} \in \sigma_e(A^*) \right\}$, where $\sigma(A)$, $\sigma_e(A)$ and $\sigma_a(A)$ are the spectrum, eigen spectrum and approximate eigen spectrum of A.
- 28. Let A be a non-zero compact self adjoint operator on a Hilbert space H over \mathbb{C} . Prove that there exist an infinite sequence $\{s_n\}$ of non-zero real numbers with $|s_1| \ge |s_2| \ge \dots$ and an orthonormal set $\{u_1, u_2, \dots\}$ in H such that

$$A(x)\sum_{n}s_{n}\left\langle x,u_{n}\right\rangle u_{n}.$$

 $(2 \times 4 = 8 \text{ weightage})$