8	2	5	your	4
0	CORR	C.3	-	185

(Pages: 2)

Nam	C
Reg	No

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 20129

(CUCSS)

Mathematics

MT 4E 02-ALGEBRAIC NUMBER THEORY

me: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Express the polynomial $t_1^3 + t_2^3 + t_3^3$ in terms of elementary symmetric polynomials (n = 3).
- 2. Let G be a free abelian group with basis x, y, z and let H be the subgroup of G generalised by 41x+32y-999z, 16y+3z, 2y+111z. Find the order of G/H.
- 3. Express $Q(\sqrt{2}, \sqrt[3]{6})$ in the form $Q(\theta)$.
- 4. Prove that an algebraic integer is a national number if and only if it is a rational integer.
- 5. Let $\{\alpha_1, \ldots, \alpha_n\}$ be any Q-basis of K. Then prove that $\Delta[\alpha_1, \ldots, \alpha_n] = \det(\mathbb{T}(\alpha_i \alpha_j))$.
- 6. Find a Z-basis for the integers of $Q(^3\sqrt{5})$.
- 7. Prove that factorization into irreducibles is not unique in the ring of integers of $\mathbb{Q}(\sqrt{15})$.
- 8. Prove: A prime in an integral domain D is always irreducible.
- 9. Prove that every Euclidean domain is a principal ideal domain.
- 10. Prove that every maximal ideal is a prime ideal.
- 11. If O(a) = (a) is a principal non-zero ideal. Prove that N(O(a)) = |N(a)|.
- 12. Let L be an m-dimensional lattice in \mathbb{R}^n . Prove that \mathbb{R}^n/L is isomorphic to $\mathbb{T}^m \times \mathbb{R}^{n-m}$
- 13. Let $K = Q(\theta)$ where $\theta^3 = 4$. Describe the map σ in this case.
- 14. Let $K = Q(\sqrt{5})$. Factorize the principal ideal (3) in the ring of integers of K.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Let G be a free abelian group of rank r and H a subgroup of G. Then prove that G/H is finite i only if the ranks of G and H are equal.
- 16. Prove the algebraic integers form a subring of the field of algebraic numbers.
- 17. Prove that every number field passesses an integral basis.
- 18. Let $d \not\equiv 1 \pmod{4}$ be a square free integer. Then prove that $Q(\sqrt{d})$ has an integral basis $\{1, d\}$ and discriminant 4d.
- 19. Let d be a square free negative integer with $d \neq -1$, -3. Let U be the group of units of the r integers of $Q(\sqrt{d})$. Show that $U = \{\pm 1\}$.
- 20. Prove that factorization into irreducibles is possible in a noetherian domain.
- 21. Let $x \in \infty$, the ring of integers in a number field K. Prove that x is a unit if and only if N(x)
- 22. Let ∞ be the ring of integers in a number field. Prove that factorization of ∞ into irreduci unique if and only if ∞ is a principal ideal domain.
- 23. With usual notation prove: If $\alpha_1, \ldots, \alpha_n$ is a basis for k, over Q then $\sigma(\alpha_1), \ldots, \sigma(\alpha_n)$ linearly independent over R.
- 24. Compute the class number of $Q(\sqrt{-6})$.

 $(7 \times 2 = 14 \text{ weight$

Part C

Answer any two questions.

Each question carries 4 weightage.

- 25. Let $\zeta = e^{2\pi_i/p}$, p an odd prime. Prove that the ring of integers of $Q(\zeta)$ is $Z[\zeta]$.
- 26. Let d < -1 1 be a square free integer. Prove that the ring of integers of $Q(\sqrt{d})$ is not Euc
- 27. If OI and μ are non-zero ideals of the ring of integers of a number field, prove that $N(OI_{\mu}) = = N(OI)$. $N(\mu)$.
- 28. Prove that the equation $x^4 + y^4 = z^2$ has no integer solutions with $x, y, z \neq 0$.

 $(2 \times 4 = 8 \text{ wei})$