Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2015

(CUCSS)

Mathematics

MT 4C 16-DIFFERENTIAL GEOMETRY

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1 x_2$.
- 3. Let $f: U \to \mathbb{R}$ be a smooth function and let $\alpha: I \to U$ be an integral curve of ∇f . Show that:

$$\left(\frac{d}{dt}\right)(f\circ d)(t) = \|\nabla f(\alpha(t))\|^2 \text{ for all } t\in I.$$

- 4. Sketch the cylinder over the graph of $f(x) = \cos x$.
- 5. Show that the two orientations on the unit n-sphere $x_1^2 + \ldots + x_{n+1}^2 = 1$ are given by:

$$N_1(p) = (p, p)$$
 and $N_2(p) = (-p, p)$.

- 6. Prove that geodesics have constant speed.
- 7. Let S be an *n*-surface in \mathbb{R}^{n+1} , let $\alpha: I \to S$ be a parametrized curve and let X and Y be vector fields tangent to S along α . Verify that (X + Y)' = X' + Y'.
- 8. Compute $\nabla_v(f)$ where $f: \mathbb{R}^{n+1} \to \mathbb{R}, p \in \mathbb{R}^{n+1}, v \in \mathbb{R}^{n+1}_p$ where $f(x_1, x_2, x_3) = x_1, x_2, x_3^2$ and v = (1, 1, 1, a, b, c) (n = 2).
- 9. Find a global parametrization of the plane curve $x_1^2 + \frac{x_2^2}{4} = 1$. (You may choose the orientation).

C 82

10. Find the length of the parametrized curve $\alpha:[0,2\pi]\to\mathbb{R}^4$ given by $\alpha(t)=(\cos t,\sin t,\cos t,\sin t)$

- 11. Let $S \subset \mathbb{R}^{n+1}$ be an oriented *n*-surface, let $p \in S$. Define the second fundamental form of S
- 12. Let U be an open set in \mathbb{R}^n , let $\varphi: U \to \mathbb{R}^m$ be a smooth map, let $d\varphi$ be the differential of Prove that the restriction $d\varphi_p$ of $d\varphi$ to \mathbb{R}^n_p is a linear map $d\varphi_p: \mathbb{R}^n_p \to \mathbb{R}^m_{\varphi(p)}$.
- 13. Let $Q: U_1 \to U_2$ and $\psi: U_2 \to \mathbb{R}^k$ be smooth where $U_1 \subseteq \mathbb{R}^n$ and $U_2 \subseteq \mathbb{R}^m$. Verify the crule $d(\psi \circ \phi) = d\psi \circ d\phi$.
- 14. Let S be an n-surface in \mathbb{R}^{n+k} $(k \ge 1)$. Let $p \in S$. Define the tangent space S_p at p.

 $(14 \times 1 = 14 \text{ weigh})$

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Find the integral curve through p = (a, b) of the vector field X on \mathbb{R}^2 given by X(p) = (p, X) where $X(x_1, x_2) = (x_2, x_1)$.
- 16. Sketch the tangent space at a typical point of the level set $f^{-1}(1)$ where $f(x_1, x_2, x_3) = x_1^2 + x_2^2$
- 17. Show that the set S of all unit vectors at all points of \mathbb{R}^2 forms a 3-surface in \mathbb{R}^4 .
- 18. Show that the spherical image of an n-surface with orientation N is the reflection through origin of the spherical image of the same n-surface with orientation N.
- 19. Prove that, in an *n*-phase, parallel transport is path independent.
- 20. Let S be the unit *n*-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ oriented by the outward unit normal vector field. Prove the Weingarten map of S is multiplication by -1.
- 21. Let $\alpha(t) = (x(t), y(t))(t \in I)$ be a local parametrization of the plane curve C. Show that:

$$r \circ \alpha = (x'y'' - y'x'')/(x'^2/y'^2)^{3/2}$$
.

- Let S be the ellipsoid $\left(x_{1}^{2}/a^{2}\right)+\left(x_{2}^{2}/b^{2}\right)+\left(x_{3}^{2}/c^{2}\right)=1$. Find the Gaussian curvature of S. $\left(abc\neq0\right)$.
- Show that the Weingarten map at each point of a parametrized *n*-surface is self-adjoint.
- State and prove the Inverse Function Theorem for n-surfaces.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. Let U be an open set in \mathbb{R}^{n+1} and let $f: \mathbb{U} \to \mathbb{R}$ be smooth. Let $p \in \mathbb{U}$ be a regular point of f and let c = f(p). Then prove : the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $\left[\nabla f(p)\right]^{\perp}$.
- 26. Let S be an n-surface in \mathbb{R}^{n+1} , let $p \in S$ and let $v \in S_p$. Then prove there exists an open interval I containing O and a geodesic $\alpha:I\to S$ such that :
 - (i) $\alpha(0) = p$ and $\dot{\alpha}(0) = U$.
 - (ii) If $\beta:\tilde{I}\to S$ is any other geodesic in S with $\beta(0)=p$ and $\dot{\beta}(0)=v$, then $\tilde{I}\subset I$ and $\beta(t) = \alpha(t)$ for all $t \in \tilde{I}$.
- 27. Let η be the 1-form on $\mathbb{R}^2 \{0\}$ defined by :

$$\eta = \frac{x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2.$$

- Then prove that for $\alpha:[a,b] \to \mathbb{R}^2 \{0\}$, any piecewise smooth closed parametrized curve in $\mathbb{R}^2 - \{0\}$ $\int_0^{\eta} \eta = 2 \pi k$ for some integer K.
- 28. Let $\varphi: U \to \mathbb{R}^{n+1}$ be a parametrized n-surface in \mathbb{R}^{n+1} and let $p \in U$. Then show that there exists an open set $U_1 \subset U$ about p such that $\phi(U_1)$ is an n-surface in \mathbb{R}^{n+1} .

 $(2 \times 4 = 8 \text{ weightage})$