(Pages: 4)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2016

(CUCSS)

Mathematics

MT 4C 16—DIFFERENTIAL GEOMETRY

me: Three Hours

Maximum: 36 Weightage

Standard notation as in the prescribed text is followed.

Part A

Answer all questions. Each question carries weightage 1.

1. Sketch the level sets $f^{-1}(c)$ at the heights indicated

$$f(x_1, x_2, x_3) = x_1^2 - x_2^2 - x_3^2$$
; $c = -1, 0$.

- 7. Find and sketch the gradient field of the function $f(x_1, x_2) = (x_1^2 x_2^2) / 4$.
- 3. Show by example that the set of vectors tangent at a point p of a level set might be all of \mathbb{R}_p^{n+1} .
- 4. Show that the set S of all unit vectors at all points of \mathbb{R}^2 forms a 3-surface in \mathbb{R}^4 .
- 5. Show that if S is a connected n-surface in \mathbb{R}^{n+1} and $g: S \to \mathbb{R}$ is continuous and takes on only finitely many values, then g is constant.
- 6. Describe the spherical image of the paraboloid $-x_1 + x_2^2 + x_3^2 = 0$ (Choose your orientation).
- 7. Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed, then $\ddot{\alpha}(t) \perp \dot{\alpha}(t)$ for all $t \in I$.
- 8. Let S be an n-surface in \mathbb{R}^{n+1} , let $\alpha: I \to S$ be a parametrized curve. Let X be a vector field tangent to S along α . Verify that

$$(f \mathbf{X})' = f' \mathbf{X} + f \mathbf{X}'$$

for all smooth functions f along α .

9. Compute ∇f where $f: \mathbb{R}^2 \to \mathbb{R}$ and $v \in \mathbb{R}^2_p$, $p \in \mathbb{R}^2$.

$$f(x_1, x_2) = x_1^2 - x_2^2, v = (1, 1, \cos \theta, \sin \theta).$$

- 10. Let C be an oriented plane curve and $p \in \mathbb{C}$ with $k(p) \neq 0$. Define the circle of curvature at p.
- 11. Find the length of the given parametrized curve $d:[0,2\pi] \to \mathbb{R}^3$, where $\alpha(t) = (\sqrt{2}\cos 2t, \sin 2t, \sin 2t).$
- 12. Let S be an oriented 2-surface in \mathbb{R}^3 and let $p \in S$. Show that for each $v, \omega \in S_p$

$$L_{p}(\vartheta) \times L_{p}(\omega) = k(p)\vartheta \times \omega.$$

- 13. Let $Q: U_1 \to U_2$ and $\psi: U_2 \to \mathbb{R}^k$ be smooth. Verify the chain rule $d(\psi \circ \phi) = d \psi \circ d \psi$.
- 14. Show that if $S = f^{-1}(c)$ is an *n*-surface in \mathbb{R}^{n+k} and $p \in S$, then the tangent space S_p to S at p is equal to the kernal of df_p .

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries weightage 2.

- 15. Find the integral curve through p(0,1) of the vector field X on \mathbb{R}^2 given b $X(p) = (p, X(p)) \text{ where } X(x_1, x_2) = (-2x_1, \frac{-1}{2}x_2).$
- 16. Show that the maximum and minimum values of the function $g(x_1, ..., x_{n+1}) = \sum_{i, j=1}^{n+1} a_{ij} x_i$

on the unit *n*-sphere $\sum_{i=1}^{n+1} x_i^2 = 1$ where (a_{ij}) is a symmetric $n \times n$ matrix of real numbers, are t eigenvalues of the matrix (a_{ij}) .

C 3545

- Let S be an *n*-surface in \mathbb{R}^{n+1} , let X be a smooth tangent vector field on S and let $p \in S$. Then prove the existence of the maximal integral curve of X through p.
- Show that if the spherical image of a connected *n*-surface is a single point, then S is contained in an *n*-plane.
- For $\theta \in \mathbb{R}$, let $\alpha_{\theta}: [0,\pi] \to S^2$ be the parametrized curve in the unit sphere S^2 from the north pole p=(0,0,1) to the south pole q=(0,0,-1), defined by $\alpha_{\theta}(t)=(\cos\theta\sin t,\sin\theta,\sin t,\cos t)$. Let $v=(p,1,0,0)\in S_p$. Then compute $P_{\alpha_{\theta}}(v)$.
- D. Let S be an *n*-surface in \mathbb{R}^{n+1} , oriented by the unit normal vector field N. Let $p \in S$ and $v \in S_p$. Let $\alpha: I \to S$ be a parametrized curve with $\alpha(t_0) = v$ for some $t_0 \in I$. Then prove that $\ddot{\alpha}(t_0) \cdot N(p) = L_p(v) \cdot v$.
- I. Let $g: I \to \mathbb{R}$ be a smooth function and let C denote the graph of g. Show that the curvature of C at the point (t, g(t)) is $g''(t)/(1+g'_{(t)}2)^{3/2}$ for an appropriate choice of orientation.
- 2. Find the Gaussian curvature of the ellipsoid $x_1^2 / 4 + x_2^2 / 4 + x_3^3 / 9 = 1$.
- 3. Show that the Weingarten map at each point of a parametrized n-surface in \mathbb{R}^{n+1} is self-adjoint.
- 4. State and prove inverse function theorem for n-surfaces.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries weightage 4.

5. Let S be a compact, connected oriented n-surface in \mathbb{R}^{n+1} . Prove that the Gauss map maps S onto the unit n-sphere \mathbb{S}^n .

- 26. Let C be a connected, oriented plane curve and let $\beta: I \to C$ be a unit speed global parametrization. C. Then prove that β is either one-to-one or periodic. Further show that β is periodic iff C compact.
- 27. Let S be a compact oriented n-surface in \mathbb{R}^{n+1} . Prove: There exists a point $p \in S$ such that t second fundamental form at p is definite.
- 28. Let S be an *n*-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. Suppose that $f \circ g$ is smooth for each let parametrization, $\varphi: U \to S$. Then prove that f is smooth.

 $(2 \times 4 = 8 \text{ weightag})$