Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE EXAMINATION, MARCH 2017 (CUCSS - PG)

(Mathematics)

CC15P MT4 C15 - FUNCTIONAL ANALYSIS II

(2015 Admission) avoid sough by and and X 191

Time: Three Hours

Maximum: 36 Weightage

Part I (Answer all questions - 14 x 1 = 14 weightage)

- Let X be a normed space over K. Consider subsets U and V of X such that $U \subset V + kU, k \in K$. Prove that for every $x \in U$, there is a sequence (v_n) in V such that $x (v_1 + kv_2 + \cdots + k^{n-1}v_n) \in k^nU$, n = 1,2,...
- 2 Let X be a normed space and $f: X \to K$ be linear. Prove that f is a closed map if and only if f is continuous.
- 3. Find the relation between $\sigma(A)$ and $\sigma(A^{-1})$
- 4. Let X_0 be a dense subspace of a normed space X. For $x' \in X'$, let F(x') denote the restriction of x' to X_0 . Show that F is a linear isometry from X' onto X_0' .
- 5. Define a reflexive normed space. Is l1 reflexive? Why?
- 6. Let X be a normed space. $z \in X$ and $f \in X'$. Show that $T: X \to X$ defined by T(x) = f(x)z is a compact linear map.
- 7 Let X be an inner product space $E \subseteq X$. Show that E^{\perp} is a closed subspace of X.
- Let $(x_n) \in H$. Prove that $x_n \to x$ if and only if $x_n \stackrel{w}{\to} x$ and $\limsup ||x_n|| \le ||x||$
- Define adjoint of $A \in BL(H)$ and show that $(A + B)^* = A^* + B^*$.
- Let $A \in BL(H)$. Prove that A is Normal if and only if $||A(x)|| = ||A^*(x)||, \forall x \in H$
- Show that each orthogonal projection on a Hilbert space is a positive operator.
- If x₂ and x₂ are eigen vectors of a normal operator corresponding to distinct eigen values show that they are orthogonal.

- 13. Let A be a self adjoint compact operator on a non-zero Hilbert space, show that 100 MeV ||A|| or -||A|| is an eigen value of A.
- 14. Give an example of Hilbert Schmidt operator on $H = l^2$

Part II (Answer any seven questions - 7 x 2 = 14 weightage)

15. Let X be a normed space. Prove that the projection P on X is a closed map if and only if R(P) and Z(P) are closed in X. Maximum: 36 Weightage

Time: Three Hours

- 16. State and prove two-norm theorem
- 17. Let X be a normed space $A \in BL(X)$ be of finite rank. Show that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$
- 18. Show that the map $T: BL(X,Y) \to BL(Y',X')$ mapping F to F' is linear and norm preserving, F \in BL (X, Y) as a second x \in U \in V + kU, k \in K. Prove that for every x \in U, \in \text{Decreases a second x \in V}.
- 19. Let X be a reflexive normed space. Prove that X' is reflexive.
- 20. Let X be a uniformly convex normed space and (x_n) be a sequence in X such that $||x_n|| \to 1$ and $||x_n + x_m|| \to 2$ as n, $m \to \infty$. Show that (x_n) is Cauchy.
- 21. Prove that every Hilbert space is reflexive.
- 4 et Xo be a dense subspace of a normed spa 22. Let H be a Hilbert space. A ∈ BL (H). Show that R (A) = H if and only if A* is bounded below.

Define a reflexit e normed space its 11 reflexities

- 23. State and prove generalized Schwartz Inequality.
- 24. Let $A \in BL(H)$. Show that $\sigma_e(A) \subseteq \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \{k: \overline{k} \in \sigma_e(A^*)\}$

Part III (Answer any two questions $-2 \times 4 = 8$ weightage)

- 25. State and prove Open mapping theorem. Give example to show that it does not hold if X is not a Banach space.
- 26 Prove that the dual of K^n with the norm $\|.\|_p$ is linearly isometric to K^n with the norm $\|.\|_q$, where $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$ is the provential of the provential p = 1.
- 27. State and prove unique Hahn Banach extension theorem.
- 28. Let H be a Hilbert space and A ε BL(H) be a Hilbert -Schmidt operator. Show that A and A are compact. show that they are orthogonal