Name	

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, FEBRUARY 2013

(CUCSS)

Mathematics

MT 1C 02-LINEAR ALGEBRA

(2010 admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Type)

Answer all questions.

Each question carries weightage 1.

- 1. Let V be a vector space over a field F. Prove that if $0 \in V$ and $C \in F$ then C.O = 0.
- 2. Prove that $U = \{(x, x) : x \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- 3. Verify whether the set of all upper triangular matrices span the space of all 2×2 matrices.
- 4. Find the dimension of the space of all $n \times n$ diagonal matrices over \mathbb{R} .
- 5. Find the co-ordinate vector of $(1,2,3) \in \mathbb{R}^3$ with respect to the ordered basis $\{(1,2,0),(1,1,0),(0,1,1)\}$.
- 6. Verify whether f(x,y) = xy for $(x,y) \in \mathbb{R}^2$ is a linear transformation from \mathbb{R}^2 to \mathbb{R} .
- 7. Let W = span $\{(1,1,0),(1,0,1)\}$. Let f be defined by f(x,y,z) = x y z. Verify whether f belongs to W⁰.
- 8. Find the characteristic polynomial of $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.
- 9. Find the characteristic values of $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$.
- 10. Let W = span $\{(1,1,1)\}$ in \mathbb{R}^3 and $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by T(x,y,z) = (x+y,y+z,2z). Verify whether W is an invariant subspace of T.
- 11. Let $W_1 = \text{span } \{(1,2,1)\}$ and $W_2 = \text{span } \{(2,1,1)\}$. Verify whether $W_1 + W_2$ is a direct sum.
- 12. Verify whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (2x + y, 0) is a projection.
- 13. Verify whether (1,2), (-2,1) are orthogonal in \mathbb{R}^2 .
- 14. If E is an orthogonal projection of a space V on a subspace W, prove that Null (1 E) = W.

 $(14 \times 1 = 14 \text{ weightage})$

Part B (Paragraph Type)

Answer any seven questions. Each question carries weightage 2.

- 15. Let S; $\{\alpha, \beta\}$ be a subset of V, where V is a vector space. Prove that the set of all linear combination of S is a subspace of V.
- 16. Verify whether $S = \{(x, y, xy) : x \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- 17. If W_1 , W_2 are subspaces of a vector space V, prove that $W_1 + W_2$ is a subspace of V.
- 18. Let V be a vector space of dimension n. Prove that any set of n-1 vectors is not a basis of V.
- 19. Find the matrix of the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, x, y + z) with respect to the ordered basis $B = \{(1,2,1), (1,1,2), (2,1,1)\}$.
- 20. Let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be a basis of a vector space V and $\{f_1, f_2, ..., f_n\}$ be the dual basis of V^A. Prothat $\alpha = \sum_i f_i(\alpha) \alpha_i$ for each $\alpha \in V$.
- 21. Let T be a linear operator on a vector space V and for some $\alpha \in V$ let $T(\alpha) = c\alpha$. Prove that any polynomial $f, f(T)(c).\alpha$.
- 22. Express \mathbb{R}^3 as a direct sum $W_1 \oplus W_2$, where $W_1 = \text{span } \{(1,1,1)\}$.
- 23. Let T be a linear operator on a vector space $V = W_1 \oplus W_2 \oplus ... \oplus W_k$; where each W_i is an invariant subspace for T. Prove that if each W_i is an eigen space of V then T is diagonalizable.
- 24. Verify whether $(x \mid y)$ given by $(x \mid y) = x_1y_1 x_2y_2$ for $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ is an in product. $(7 \times 2 = 14 \text{ weights})$

Part C (Essay Type)

Answer any two questions.

Each question carries weightage 4.

- 25. Define dimension of a vector space. Show that if W_1 , W_2 are subspaces of a finite dimension vector space, then $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.
- 26. Let A be an $m \times n$ matrix over a field F. Show that for any $n \times 1$ matrix X, T (X) = AX is a literansformation from the space of $n \times 1$ matrices to the space of $m \times 1$ matrices. Prove also that I T = column rank of A.
- 27. Define the annihilator W^0 of a subspace W. Let W_1 , W_2 be subspaces of a finite dimensional s V. Prove that if $W_1^0 + W_2^0$ then $W_1 = W_2$.
- 28. Define projection. Show that if E is a projection on a vector space V then $V = R \oplus N$ where R i range of E and N is the null space of E.