Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Physics

PHY 1C 01—CLASSICAL MECHANICS

(2012 Admission onwards)

Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- Is the Lagrangian formulation more advantageous than the Newtonian formulation? Why?
- Explain what Kepler's first law implies when it is coupled with the second law?
- What is gauge transformation? What arbitrariness does it introduce?
- Write down the Jacob's form of the least action principle.
- Give the Lagrangian for the Kepler problem.
- What is linear transformation? Give example.
- How is generalized potential defined? How is it different from the conventional potential?
- What is meant by impact parameter? What is its magnitude for a head on collision?
- When does the CM system coincide with the lab system in the case of two body collision?
- What is Chaos? How does it arise?
- Define degree of freedom. Give example.
- Write down the Lagrangian for a dumb bell.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **two** questions.

Each question carries 6 weightage.

- What is differential scattering cross section? Derive the Rutherford formula for scattering cross section in a Central force field scattering.
- What is meant by action and angle variable? Discuss the Harmonic oscillator problem using action and angle variable technique.

- 3. Obtain the non-linear equation for a pendulum. Derive the exact solution of the equation in ter of elliptic integral.
- 4. Derive Euler's equation of motion for rigid bodies. Explain the force free motion of a symmetric $(2 \times 6 = 12)$ weights

Part C

Answer any four questions. Each question carries 3 weightage.

- 1. Show that the transformation $Q = \sqrt{2q} e^{\infty} \cos p$ and $P = \sqrt{2q} e^{-\infty} \sin P$ is a canon transformation.
- 2. Find the horizontal component of the Coriolis force acting on a body of mass. 1.5 kg monorthward with horizontal velocity of 100 m/sec at 30° N latitude on earth.
- 3. Show that for a single particle with constant mass the equation of motion implies the following differential equation for the kinetic energy. $\frac{d\mathbf{T}}{dt} = \mathbf{F}.\mathbf{V}$ while if the mass varies with time corresponding equation is $\frac{d(mt)}{dt} = \mathbf{F}.\mathbf{P}$.

$$[a.r,b.p] = a.b$$
 For the following Poisson bracket prove that
$$[J,(r.p)] = 0$$

- 5. A person in a jet plane is flying along the equator due East with a speed of 540 m/sec. What Coriolis acceleration?
- 6. Q = aq + bp and P = cq + dP. Prove that the above transformation is canonical only if ad-be $(4 \times 3 = 12)$ weight