D 7288	39
--------	----

(Pages: 3)

Name	 9	4	0

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MAT 1C 05—DISCRETE MATHEMATICS

Time: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Questions) (1-14)

Answer all questions.
Each question carries 1 weightage.

- 1. Define strict partial order and give an example of it. If R is a partial order on a set X, then prove that $R \{(x, x) : x \in X\}$ is a strict partial order on X.
- 2. Prove that intersection of two chains is a chain.
- 3. Let (X, +, ., ') be a Boolean algebra. Prove that x + x = x for all $x \in X$.
- 4. Prepare the table of values of the following function:

$$f(x_1, x_2, x_3) = x_1' x_2 (x_1' + x_2 + x_1 x_3).$$

- 5. Define Chromatic number of a graph. Find the chromatic number of P5.
- 6. Prove that every graph with n vertices and k edges has at least n-k components.
- 7. If every vertex of a graph G has degree at least 2, then prove that G contains cycle.
- 8. Prove that every tree with at least two vertices has at least two end leaves.
- 9. Define Connectivity of a graph. Prove that $k(K_n) = n 1$.
- 10. Is every subgraph of a non-planar graph non-planar? Justify your answer.
- 11. Let u be a string on the alphabet Σ . Prove that $|u^n| = n |u|$ for all n = 1, 2, ...
- 12. Let $G = (\{S\}, \{a, b\}, S, P)$ be a grammar with productions P given by

$$S \rightarrow aA, A \rightarrow bS, S \rightarrow \lambda$$
.

Give a simple description of the language generated by G.

- 13. Define non-deterministic acceptor and give an example of it.
- 14. Find the set of strings accepted by the following deterministic finite acceptor.

 $(14 \times 1 = 14 \text{ weighta})$

Part B

Answer any seven from the following ten questions (15 – 24).

Each question carries weightage 2.

- 15. Let (X, +, ., ') be a Boolean algebra. Prove that the corresponding lattice (X, \leq) is complement and distributive.
- 16. Let (X, +, ., ') be a finite Boolean algebra. Prove that every non-zero element of X contains at lone atom.
- 17. Prove that the characteristic numbers of a symmetric Boolean function completely determine
- 18. Prove that Petersen graph has diameter 2.
- 19. Prove that every, u, v-walk contains a u, v-path.
- 20. Let G be a graph. Prove that

$$\delta\left(\mathbb{G}\right) \leq \frac{2e\left(\mathbb{G}\right)}{n\left(\mathbb{G}\right)} \leq \Delta\left(\mathbb{G}\right),$$

here e(G) and n(G) denote the number of edges and vertices in G respectively.

- 21. Draw a graph G with $k(G) < k'(G) < \delta(G)$.
- 22. Is Euler's formula valid for a disconnected graph? Justify your answer.
- 23. Find a grammar that generate the language $\{a^{n+2} b : n \ge 1\}$.
- 24. Construct a nondeterministic acceptor that accepts the language $\{ab,abc\}^*$.

 $(7 \times 2 = 14 \text{ weig})$

Part C

Answer any **two** from the following four questions. (25 – 28) Each question carries weightage 4.

- 25. (a) Let (X, +, ., ') be a finite Boolean algebra. Prove that every element of X can be uniquely expressed as sum of atoms.
 - (b) Write the Boolean function:

$$f(a,b,c) = a+b+c'.$$

in their disjunctive normal form.

- 26. (a) Prove that a graph is a bipartite graph if and only if it has no odd cycle.
 - (b) Let G be a graph. Prove that

$$\sum_{v \in V(G)} d(v) = 2e(G).$$

- 27. Let G be an *n*-vertex graph with $n \ge 1$. Prove that the following are equivalent:
 - (a) G is connected and has no loops.
 - (b) G is connected and has n-1 edges.
 - (c) G has n-1 edges and no cycles.
 - (d) G has no loops and has, for each $u, v \in V(G)$, exactly one u, v-path.
- 28. Define equivalent grammars. Prove that the grammar $G = (\{S\}, \{a, b\}, S, P)$ with productions P given by :

$$S \rightarrow SS |SSS| aSb | bSa | \lambda$$
,

is equivalet to the grammar $G' = (\{S\}, \{a, b\}, S, P')$ with production P' given by:

$$S \rightarrow SS \mid aSb \mid bSa \mid \lambda$$
.

 $(2 \times 4 = 8 \text{ weightage})$