Name	

Reg. No.

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MT 1C 01-ALGEBRA - I

=: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Define the group of symmetries of a subset S of R² in R² and give an example of it.
- 2. Find the subgroups generated by $\{4,6\}$ in Z_{12} .
- 3. Find all subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ that are isomorphic to the Klein 4-group.
- 4. Let u = 1101010111 and v = 0111001110. Find u + v and wt (u v).
- 5. Find all abelian groups, upto isomorphism of order 16.
- 6. Let X be a G-set for x_1 , $x_2 \in X$, let $x_1 \sim x_2$ iff there exists $g \in G$ such that $gx_1 = x_2$. Show that \sim is a symmetric relation on X.
- 7. Find all Sylow 3-subgroups of S₄.
- 8. Show that the center of a group of order 8 is non-trivial.
- 9. Find the reduced form and the inverse of the reduced form of the word $a^2a^{-3}b^3a^4c^4c^2a^{-1}$.
- Define the evaluation homomorphism.
- II. Find all generators of the cyclic multiplicative group of units of the field Z_7 .
- Let Q be the skew field of quaternions. Write the element $(i+j)^{-1}$ in the form $a_1 + a_2i + a_3j + a_4k$ for $a_i \in \mathbb{R}$.
- III. Find all zeros of $x^3 + 2x + 2$ in \mathbb{Z}_7 .
- Find all ideals N of Z₁₂.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries 2 weightage.

- 15. Find the order of the element $(2,0)+\langle (4,4)\rangle$ in $\mathbb{Z}_6\times\mathbb{Z}_8$ / $\langle (4,4)\rangle$
- 16. Show that a subgroup M of a group G is a maximal normal subgroup of G iff G_M is simple.
- 17. Give isomorphic refinements of the two series:

$$\left\{ 0 \right\} < 60Z < 20Z < Z \ and \ \left\{ 0 \right\} < 245Z < 49Z < Z \;.$$

- 18. Show that if $H_0 = \{e\} < H_1 < H_2 < \ldots < H_n = G$ is a subnormal series for a group G, and if $\frac{H_i}{H}$ is of finite order $S_i + 1$. Then G is of finite order $S_1, S_2, \ldots S_n$.
- 19. Let G be a finite group and X a finite G-set. Show that if r is the number of orbits in X under then:

$$r \cdot |G| = \sum_{g \in G} |X_g|.$$

- 20. Show that for a prime number p, every group G of order p^2 is abelian.
- 21. Show that there are no simple groups of order 255.
- 22. Show that $(a,b:a^3=1,b^2=1,ba=a^2b)$ gives a non-abelian group of order 6.
- 23. Demonstrate that $x^4 22x^2 + 1$ is irreducible over Q.
- 24. Give the addition and multiplicative tables for the group algebra $Z_2(G)$, where $G = \{a, b\}$ is cycorder 2.

 $(7 \times 2 = 14 \text{ weight})$

Part C

Answer any two questions.

Each question carries 4 weightage.

25. Show that the group $Z_m \times Z_n$ is isomorphic to Z_{mn} iff m and n relative prime. Deduce that is any integer written as $n = \left(p_1^{r_1}\right) \left(p_2\right)^{r_2} \dots \left(p_m\right)^{r_m}$, where p_i 's are distinct primes then Z_n is isomorphic to $Z_{(p_i)r_i} \times Z_{(p_i)r_i} \times Z_{(p_i)r_i} \times Z_{(p_n)r_m}$.

- 26. Let H be a subgroup of a group G. Prove that the following conditions are equivalent:
 - (i) ghg^{-1} EH for all gEG and hEH.
 - (ii) $gHg^{-1} = H$ for all $g \in G$.
 - (iii) $gH = H_g$ for all $g \in G$.

Give an example of a subgroup H of a group G which does not satisfy condition (iii).

- 27. State and prove Cauchy's theorem using Cauchy's theorem, prove that a finite group G is a p-group iff |G| is a power of p.
- 28. State and prove Eisenstein's theorem using Eisenstein's theorem, prove that the cyclotomic polynomial:

$$\phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible over Q for many prime p.

 $(2 \times 4 = 8 \text{ weightage})$