١	7	0	0	0	0
7	7	4	O	O	U

(Pages: 3)

Vame......43

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MT 1C 02—LINEAR ALGEBRA

me: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Type)

Answer all questions.

Each question has weightage 1.

- 1. Let V be a vector space over a field F and $1 \in F$. Prove that $(-1) \cdot v = -v$ for all $v \in V$.
- 2. Show that $U = \{(x,0) : x \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- 3. Verify whether $\{(1,2,3),(1,3,1)\}$ is a basis for \mathbb{R}^3 .
- 4. Give an example of a 2-dimensional subspace of \mathbb{R}^3 .
- 5. Find the co-ordinate vector of $(1,2,3) \in \mathbb{R}^3$ with respect to the basis $\{(1,1,0),(1,0,1),(0,1,1)\}$.
- 6. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x,y) = (x+1,y+1). Verify whether T is a linear transformation.
- 7. Let $W = \text{span}\{(1,0,0),(1,1,0)\}$. Find a non-zero linear function in W^0 .
- 8. Find the characteristic polynomial of $\begin{bmatrix} 2 & 0 \\ 2 & 1 \end{bmatrix}$.
- 9. Find the characteristic values of $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$.
- 0. Verify whether $W = \{(x,0,0) : x \in \mathbb{R}\}$ is an invariant subspace of $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by : T(x,y,z) = (x+y,y+z,z).

- 11. Let $W_1 = \text{span}\{1,2,1\}$ and $W_2 = \text{span}\{(2,1,1),(1,-1,0)\}$. Verify whether $W_1 + W_2$ is a direct sum.
- 12. Verify whether $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (x+y,0) is a projection.
- 13. Let V be an inner product space. Prove that $\|c\alpha\| = |c| \cdot \|\alpha\|$ for $x \in V$.
- 14. If E is an orthogonal projection of V onto W, prove that $\alpha E\alpha \in W^{\perp}$ for all $x \in V$.

 $(14 \times 1 = 14 \text{ weightage})$

Part B (Paragraph Type)

Answer any seven questions. Each question has weightage 2.

- 15. Prove that $(1,2,3) \in \mathbb{R}^3$ is a linear combination of $\alpha = (1,2,1)$ and $\beta = (1,2,2)$.
- 16. Verify whether $S = \{(x, x+1): x \in \mathbb{R}\}$ is a subspace of \mathbb{R}^2 .
- 17. If W_1 , W_2 are subspaces of a vector space V, prove that $W_1 \cap W_2$ is a subspace of V.
- 18. Let V be a vector space of dimension n. Prove that any set of n+1 vectors of V is linear dependent.
- 19. Find the matrix of the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by T(x,y,z) = (x+y,x+z,y+z) relative to the ordered basis $B = \{(1,1,0), (0,1,1), (1,0,1)\}$.
- 20. Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be a basis of a vector space V and $\{f_1, f_2, \dots, f_n\}$ be the dual basis of V Prove that $f = \sum_{i=1}^n f(\alpha_i) f_i$ for each $f \in V^*$.
- 21. Show that similar matrices have same characteristic polynomial.
- 22. Express \mathbb{R}^2 as a direct sum of two one-dimensional subspaces.
- 23. Let T be a linear operator on a vector space V and let $V = W_1 \oplus ... \oplus W_k$, where each W_i invariant under T. Prove that if each W_i is one-dimensional then T is diagonalizable.
- 24. Verify whether $(x \mid y)$ defined as $(x \mid y) = x_1 + y_1$ is an inner product for : $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.

Part C (Essay Type)

Answer any **two** questions. Each question has weightage 4.

- 25. (a) Define linearly independent set in a vector space.
 - (b) Let A be an $n \times n$ matrix over a field F. Prove that if the row vectors of A form a linearly independent set then A is invertible.
- 26. Let V be a finite dimensional vector space and $T:V\to V$ be a linear operator. Prove that the following are equivalent:
 - (i) T is invertible.
 - (ii) T is one-to-one.
 - (iii) T is onto.
- 27. (a) Define the annihilator W⁰ of a subspace W of a vector space V.
 - (b) Show that if V is finite dimensional then $\dim W + \dim W^0 = \dim V$.
- 18. (a) Prove that an orthogonal set of non-zero vectors is linearly independent.
 - (b) Let W be a subspace of an inner product space V and $\beta \in V$. Show that $\alpha \in W$ is a best approximation to β if and only if $\beta \alpha \in W^{\perp}$.

 $(2 \times 4 = 8 \text{ weightage})$