72912

(Pages: 3)

Name.....55

Reg. No....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Statistics

ST 1C 01-MEASURE THEORY AND INTEGRATION

(2013 Admissions)

me: Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions. Weightage 1 for each question.

- 1. Examine whether $f(x) = e^{-x^2}$, $x \in \mathbb{R}$ is Riemann integrable. Give the reason.
- 2. What do you mean by a product space?
- 3. Give an example of a normed linear space.
- 4. Define the integral of a measurable function.
- 5. Define L_p space.
- 6. Define Riemann-Stieltje's integral.
- 7. Give an example of an integral which depends on a parameter.
- 8. State Cartheodory extension theorem.
- 9. Define a sigma field and show that it is closed under countable intersections.
- 10. Show that the set of prime numbers is a Lebesgue measurable set.
- 11. Define absolute continuous measures.
- 12. Give an example of two singular measures.

 $(12 \times 2 = 12 \text{ weightage})$

Part B

Answer any **eight** questions. Weightage 2 for each question.

- 13. What do you mean by an outer measure? State and prove the sub-additivity property of outer measure.
- 14. State and prove the mean value theorem.

Turn over

- 15. Show that a non-negative continuous measurable function can be represented as the lim non-decreasing sequence of non-negative simple functions.
- 16. If $\{f_n\}$ is a sequence of measurable functions and $g = \lim_{n \to \infty} f_n$, then show that g is a measurable function.
- 17. If f and g are integrable functions, show that f + g is integrable and $\int f + g = \int f + \int g$.
- 18. Let A be the subset of [0, 1] which consists of all numbers which do not have the digit 5 ap in their decimal expansion. Examine whether A is Lebesgue measurable. If so find Lemeasure of A.
- 19. State and prove Minikowski's inequality.
- 20. Find $\lim_{\theta \to 0} \int_0^\infty (1 + \theta x)^{1/\theta} e^{-\alpha x} dx$. Give the reason.
- 21. State and prove Fatou's lemma.
- 22. If $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ on [a, b], show that $(f + g) \in \mathcal{R}(\alpha)$ and $\int_a^b (f + g) d\alpha = \int_a^b f \alpha + g \alpha$
- 23. State and prove Hahn decomposition theorem.
- 24. Distinguish between Lebesgue measure and Lebesgue-Stieltjes measure.

 $(8 \times 2 = 16 \text{ w})$

Part C

Answer any **two** questions. Weightage 4 for each question.

- 25 (a) State and prove Weistrass theorem.
 - (b) If $\{f_n\}$ and $\{g_n\}$ are two sequences of functions converges uniformly on a set A, $\{af_n+bg_n\}$ converges uniformly on A, where a and b are real constants.
- 26. (a) State and prove Holder's inequality.
 - (b) State and prove Lebesgue dominated convergence theorem.
- 27. (a) State and prove Jordan decomposition theorem.

- (b) Consider the signed measure v defined on the Borel field of subsets of R such that for each Borel set B, v (B) = $\int_{\mathbb{B}} (x^2 1) e^{-x^2} dx$. Write down a positive set and a negative set with respect to v. Also obtain a Hahn decomposition of R.
- 18. If $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{R}(\alpha)$ on [a, b] then show that :
 - (a) fg and |f| are $\in \mathcal{R}(\alpha)$.
 - (b) $|f| \in \mathcal{R}(\alpha)$ and $\left|\int_a^b f d\alpha\right| \le \int_a^b |f| d\alpha$.

 $(2 \times 4 = 8 \text{ weightage})$