n	7	2	O	0	7
,		4	O	0	8

(Pages: 3)

Nome	1	U
Name	••••	•••

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2014

(CUCSS)

Mathematics

MT 1C 03—REAL ANALYSIS—I

me: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Questions)

Answer all questions. Each question has 1 weightage.

- 1. Construct a compact set of real numbers whose limit points form a countable set.
- 2. Define perfect set. Give an example of a perfect set which is not bounded.
- 3. Prove that the set of all interior points of a set E is open.
- 4. Prove that a uniformly continuous function of a uniformly continuous functions is uniformly
- 5. Is inverse of a bijective continuous function continuous? Justify your answer.
- 6. Identify the type of discontinuity of the following function:

$$f(x) = \begin{cases} \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

at x = 0.

- 7. State Taylors theorem.
- Evaluate $\lim_{x\to 0} \frac{\sin x}{x}$
- 9. Is mean value theorem real valued functions valid for vector valued functions? Justify your
- D. Let f be a bounded real valued function defined on [a, b] and |f| be Riemann integrable on [a, b]. Is f Riemann integrable? Justify your answer.
- 1. Let f be a bounded function and α be a monotonic increasing function on [a, b]. If the partition P' is a refinement of the partition P of [a, b], then prove that $U(P', f, \alpha) \le U(P, f, \alpha)$.

- 12. Let γ be defined on $[0, 2\pi]$ by $\gamma(t) = e^{i2t}$. Prove that γ is rectifiable.
- 13. Define uniform convergence.
- 14. Prove that every function in an equicontinuous family of functions is continuous.

 $(14 \times 1 = 14 \text{ weighta})$

Part B

Answer any **seven** from the following **ten** questions. Each question has weightage 2.

- 15. Prove that finite intersection of open sets is open. Is it true in the case of arbitrary intersection Justify your answer.
- 16. Prove that infinite subset of a countable set is countable.
- 17. For $x, y \in \mathbb{R}^1$, let $d(x, y) = \max\{|x|, |y|\}$. Prove that d is a metric. Which subsets of the result metric space are open?
- 18. Let f be a continuous mapping of a metric space X into a metric space Y and let E be a described subset of X. Prove that f(E) is a dense subset of f(X).
- 19. Let f be a real valued uniformly continuous function on the bounded set E in \mathbb{R}^1 . Prove tha bounded on E.
- 20. Let f be a real valued differential function on (a, b). If f'(x) = 0 for all $x \in (a, b)$, then prove f is a constant.
- 21. Let f be a bounded function and α be a monotonic increasing function on [a, b]. Prove that Riemann-Steiltjes integrable with respect to α on [a, b], then |f| is Riemann-Steiltjes integrable with respect to α on [a, b] and

$$\left| \int_a^b d \, d\alpha \, \right| \leq \int_a^b |f| \, d\alpha.$$

- 22. Let f be Riemann integrable on [a, b] and let F be a differentiable function on [a, b] such F' = f. Prove that $\int_a^b f(x) dx = F(b) F(a)$.
- 23. Let $\{f_n\}$ be a sequence of functions defined on E such that $|f_n(x)| \le M_n$ for all n = 1, 2, ... $x \in E$. Prove that $\sum_n f_n$ converges uniformly on E if $\sum_n M_n$ converges.

24. For $n = 1, 2 \dots$ and x real let $f_n(x) = \frac{x}{1 + nx^2}$. Show that $\{f_n\}$ converges uniformly.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two from the following four questions. Each question has weightage 4.

- 25. (a) Prove that a finite set has no limit points.
 - (b) Let P be a non-empty perfect set in \mathbb{R}^k . Prove that P is uncountable.
- 26. (a) Prove that compact subsets of a metric space are closed.
 - (b) Let E be a subset of the real line \mathbb{R}^1 . Prove that E is connected if and only if it satisfies the following property: If $x \in E$, $y \in E$ and x < z < y, then $z \in E$.
- 27. (a) Let f be defined on [a, b]. If f has a local maximum at a point x and if f'(x) exists, then prove that f'(x) = 0.
 - (b) Let f be a continuous function and α be monotonic increasing function on [a, b]. Prove that f is Riemann-Steiltjes integrable with respect to α on [a, b].
- If $\{f_n\}$ be a sequence of functions on E and if $f_n \to f$ uniformly on E, then prove that f is continuous on E.

 $(2 \times 4 = 8 \text{ weightage})$