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FIRST SEMESTER M.Sc. DEGREE EXTERNAL EXAMINATION FEBRUARY 2016
(2015 Admission)

CC15P ST1 C02- Analytical Tools for Statistics 1
(STATISTICS)

Time : 3 Hrs Maximum: 36 Weightage

Part A ( Answer all questions)

Define Riemann integral of a multivariable function.
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Show that this function possess partial derivatives at (0,0).
Obtain the necessary condition for a function f(z) to be analytic.

If f is analytic in adomain S and if | f| is constant there, then show that f is constant.
Show that f(z) = x — iy? is differentiable only at y = —% and f'(z) =1

Define pole of order m of a function f(z)

What is removable singularity?

If L{F(t)} = f(s), thenfind L{t"F(t))}

State the maximum modulus principle.

Define the inverse Laplace Transform of a function

. Define half range Fourier sine and cosine series.
. State the convolution theorem for Fourier transforms.

(12 x 1=12 weightage)

Part B (Answer any eight questions. Weightage 2 for each question)
Define partial derivatives. Show that
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Flo,y) = {x2 +y?’ (x,y) # (0,0)

0, (x,¥) =(0,0)
is not continuous at the origin and the partial derivatives of f(x, y) with respect to x and y exist at
the origin.
Discuss the maxima and minima for f(x,y) = 2x* + y* — 2x? — 2y?
State and prove Morera’s theorem.
Show that the function f(z) = x3 + 3xy? + i(y3® + 3x%y) is differentiable only at points that lie on
the coordinate axes.



16. Show that the function v(x,y) = Cosx .Cosh y is harmonic and find the corresponding analytic
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function.

Find the Laurent series for the function
Evaluate fol(l +it?)dt

Establish Jordan’s lemma.
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Find the Laplace transform of : (i) e3* cos2x (i) sin®6x
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Fund the inverse Laplace transform of

Find the Fourier transform of
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X , 0<x<1

f(x) =42 —x, 1<x<2

0, x> 2

(8 x 2=16 weightage)

Part C (Answer any two questions. Weightage 4 for each question)

State and prove Laurent series expansion
State and prove Cauchy Goursat theorem.

Solve the differential equation by the method of Laplace transform:
tY"+(1-20)Y' =2y =0, Y(0)=1,Y(0)=2.

By Contour integration prove that :
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(2 x 4=8 weightage)



