17P108		(Pages:2)	Name:
			Reg. No
TITE OF	CERTIFICATION DE C	DECEDED DIVINE CONT.	DECEMENTS AND

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2017

(Regular/Supplementary/Improvement) (CUCSS-PG)

CC15P PHY1 C01/ CC17P PHY1 C01 - CLASSICAL MECHANICS

(Physics)

18. Obtain the Lagrangian of a Constant (2015 Admission onwards) relectro-magnetic field, in terms

Time: Three Hours

Maximum:36 Weightage

19. Show that $[L_i, L_j] = \epsilon_{ijk} L_k$, where i, i A TRAY

of niz b = 9 ban Answer all questions. Each question carries 1 weightage.

- 1. Show that the areal velocity is a constant for any central force motion.
- Obtain Hamilton's equations of motion from Lagrangian using Legendre transformation.
- 3. What is meant by infinitesimal canonical transformation? Explain how motion of a particle can be described using this.
- Briefly explain action and angle variables.
- Show that Hamiltonian is a constant of motion if Lagrangian is not an explicit function of time.
- 6. Show that rigid bodies have six degrees of freedom.
- 7. Show that kinetic energy of a rotating body can be expressed as $T = J.\omega$
- 8. What are normal coordinates and normal frequencies?
- 9. Explain stable and unstable equilibria on the basis of potential function.
- 10. What are limit cycles? Distinguish between stable limit cycle and semi-stable limit cycle.
- 11. What is meant by period doubling?
- 12. Explain the principles of Least action.

 $(12 \times 1 = 12 \text{ Weightage})$

PART B

Answer any two questions. Each question carries 6 weightage.

- Define Scattering cross section. Discuss the Rutherford's scattering problem and obtain the expression for scattering cross section
- 14. Obtain Hamilton Jacobi equation in Hamilton's Principal function and Hamilton's characteristic function and discuss the separation of variables. Discuss the one dimensional harmonic oscillator problem using H-J equation
- 15. Define Euler's angles and obtain complete set of transformation matrix.
- 16. Obtain the non-linear equation for a simple pendulum. Derive the exact solution of the equation in terms of elliptic integral.

 $(2 \times 6 = 12 \text{ Weightage})$

Answer any four questions. Each question carries 3 weightage.

- 17. A pendulum of mass m is attached to a block of mass M. The block slides on a horizontal frictionless surface. Find the Lagrangian and equation of motion of the pendulum. For small amplitude oscillation, derive the expression for period of oscillations.
- 18. Obtain the Lagrangian of a charged particle moving in an electro-magnetic field, in terms of scalar and vector potentials.
- 19. Show that $[L_i, L_i] = \varepsilon_{ijk} L_k$, where i, j, k = x, y or z
- 20. Find the values of α and β if the transformation given by $Q = q^{\alpha} \cos \beta p$ and $P = q^{\alpha} \sin \beta p$ is canonical.
- 21. Find the horizontal component of the Coriolis force acting on a body of mass 1.5kg moving northward with horizontal velocity of 100 m/s at 30 deg latitude on earth.
- 22. Show that eigen vectors corresponding to the two distinct eigen frequencies are
- notional state of the second and the second of the second

- Show that rigid bodies have six degrees of freedom
- Show that kinetic energy of a rotating body can be expressed as $T = J.\omega$
 - What are normal coordinates and normal frequencies?
 - Explain stable and unstable equilibria on the basis of potential function
- 10. What are limit cycles? Distinguish between stable limit cycle and semi-stable limit cycle
 - 11. What is meant by period doubling?
 - 12. Explain the principles of Least action.

 $(12 \times 1 = 12 \text{ Weightage})$

orthogonal.

PART B

Answer any new questions. Each question carries 6 weightage

- 3. Define Scattering cross section. Discuss the Rutherford's scattering problem and obtain the expression for scattering cross section.
 - 4. Obtain Hamilton Jacobi equation in Hamilton's Principal function and Hamilton's characteristic function and discuss the separation of variables. Discuss the one dimensional harmonic oscillator problem using H-J equation
 - Define Euler's angles and obtain complete set of transformation matrix.
- 16. Obtain the non-linear equation for a simple pendulum. Derive the exact solution of the equation in terms of elliptic integral.