_	-	-	-	-	-
1	7	D	1	m	7

(Pages:2) Name: ...

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2017 (CUCSS-PG)

CC17P MT1 C05 - DISCRETE MATHEMATICS

(Mathematics)

(Regular 2017 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Define strict partial order and give an example of it. If R is a partial order on a set X, then prove that $R - \{(x, x): x \in X\}$ is a strict partial order on X.
- 2. Let $(X, +, \cdot, \cdot)$ be a Boolean algebra. Show that (x + 1) = 1.
- 3. Define distributive lattice. Give an example of a lattice that is not distributive.
- 4. Distinguish between atom and coatom.
- 5. Prove that e = xy is a cut edge of a connected graph G if and only if there exist vertices u and v such that e belongs to every u - v path in G.
- 6. Define normal product in graphs.
- 7. Prove that $\lambda(K_n) = n 1$.
- 8. Prove or disprove: If H is a subgraph of G then $\lambda(H) \leq \lambda(G)$.
- 9. Define Eulerian graph. Give an example of a graph that is not Eulerian.
- 10. Give an example of a non simple disconnected graph with $\delta \ge \frac{n-1}{2}$.
- 11. Describe the language generated by the grammar with productions, $S \to \alpha Sb$, $A \to \lambda$.
- 12. Define non-deterministic acceptor and give an example of it.
- 13. Define extended transition function δ^* with an example.
- 14. Let u be a string on the alphabet Σ . Prove that $|u^n| = n |u|$ for all n = 1,2,3,...

 $(14 \times 1 = 14 \text{ Weightage})$

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Prove that the set $\Gamma(G)$ of all automorphisms of a simple graph G is a group with respect to the composition of mappings as the group operation.
- 16. Prove that A connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
- 17. Show that the connectivity and edge connectivity of a simple cubic graph G are equal.

- 18. If $d = (d_1, d_2, d_3, ..., d_n)$ is any sequence of nonnegative integers with $\sum_{i=1}^n d_i$ even, show that there exists a graph (not necessarily simple) with d as its degree sequence.
- 19. Draw the Hasse Diagram for the lattice(D_{20} , \leq). D_{20} be the set of all divisors of 20 and \leq be the relation 'divides'.
- 20. Prove that the characteristic numbers of a symmetric Boolean function completely determine it. (200122100 A TIOS 181020 A)
- 21. Define a subalgebra. Show that a subalgebra *Y* of a Boolean algebra *X* is itself a Boolean algebra.
- 22. Find a dfa for the language $L = \{w: |w| \mod 3 = 0\}$ on $\Sigma = \{a, b\}$.
- 23. Find a grammar that generates $L = \{a^n b^{2n} : n \ge 0\}$.
- 24. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a dfa, and let G_M be its associated transition graph. Then for every $q_{i,}q_{j} \in Q$, and $w \in \Sigma^+$, prove that $\delta^*(q_i, w) = q_j$ if and only if there is in G_M a walk with label w from q_i to q_j .

 $(7 \times 2 = 14 \text{ Weightage})$

es u and v such that e belone \mathbf{C} art \mathbf{C}

Answer any two questions. Each question carries 4 weightage.

- 25. (a). Prove that a graph G with at least three vertices is 2-connected if, and only if, any two vertices of G are connected by at least two internally disjoint paths.
 - (b). Prove that every connected graph contains a spanning tree.
- 26. (a). State and prove Euler's formula for a connected plane graph G.
 - (b). Prove that if G is a simple planar graph with at least 3 vertices, then $m \le 3n 6$.
 - (c). Prove that the Petersen graph is nonplanar.
- 27. Distinguish between D. N. F. and C. N. F. Express the function $f(x_1, x_2, x_3) = x_1'x_2(x_1' + x_2 + x_1x_3)$ in its C.N.F. and D.N.F.
- 28. Define regular languages. Show that the language $L = \{vwv: v, w \in \{a, b\}^*, |v| = 2\}$ is regular.

 $(2 \times 4 = 8 \text{ Weightage})$

15. Prove that the set $\Gamma(G)$ of all autor******s of a simple graph G is a group with

spect to the composition of mappings as the group opening

Show that the connectivity and edge connectivity of a simple cubic graph G