1	7	D	1	0	0
1	/	r	1	U	7

(Pages:2)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2017

(Regular/Supplementary/Improvement)

(CUCSS-PG)

CC15P PHY1 C02/ CC17P PHY1 C02 – MATHEMATICAL PHYSICS - I (Physics)

(2015 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

PART - A

Answer all questions. Each question carries 1 weightage.

- 1. Write down the rotation matrix for the rotation of co-ordinates through an angle θ about the z axis.
- 2. Give the expression for volume element in cylindrical co-ordinates. What are the scale factors?
- 3. What do you mean by contraction of tensors? Illustrate with an example.
- 4. Define Hermitian matrices and Unitary matrices. Give example to each case.
- 5. Define Levi-Civita three index symbol.
- 6. Explain self-adjoint differential equations.
- 7. Prove that the Legendre polynomial $P_n(1)=1$.
- 8. Explain Fuch's theorem.
- 9. What are the properties of Hermitian operators?
- 10. Define β function and show that $\beta(1/2, 1/2) = \pi$.
- 11. State the first shifting theorem of Laplace transform.
- 12. State Fourier series formula for a periodic function of period 2L in the interval (-L,L).

 $(12 \times 1 = 12 \text{ weightage})$

PART-B

Answer any two questions. Each question carries 6 weightage.

- 13. Derive the expression for gradient, divergence and curl in general curvilinear coordinate system. Use the result to find the expressions for the same in circular cylindrical and spherical polar co-ordinates.
- 14. Obtain the series solution of Bessel's equation. Explain the limitations of this solution.
- 15. Derive and explain Fourier integral theorem. Use this to define Fourier transform and inverse Fourier transform.
- 16. Explain Gram-Schmidt orthogonalisation procedure with suitable example.

 $(2 \times 6 = 12 \text{ weightage})$

Answer any *four* questions. Each question carries 3 weightage.

- 17. Prove that Cylindrical coordinate system is orthogonal.
- 18. Show that $P_n(x)$ is the coefficient of t^n in the expansion of $(1-2xt+t^2)^{-1/2}$.
- 19. Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$
- 20. Derive the recurrence relation $\Gamma(z+1) = z\Gamma z$.
- 21. Find the Fourier series of the function: $f(x) = x^2, -\pi \le x \le \pi$.
- 22. Using partial fraction expansion, find inverse Laplace transform of $\frac{1}{(s^2+4)(s^2+9)}$. (4 × 3 = 12 weightage)
 - 2. Give the expression for volume element in cylindrical co-ordinates. What are the
 - 3. What do you mean by contraction of tensors? Illustrate with an example.
 - 4. Define Hernitian matrices and Unitary matrices. Give example to each case
 - 5. Define Levi-Civita three index symbol
 - Explain self-adjoint differential equations.
 - 7. Prove that the Legendre polynomial P.(1)=1.
 - 8. Explain Fuch's theorem
 - What are the properties of Hermitian operators?
 - 0. Define 8 function and show that B(1/2.1/2)= π .
 - State the first shifting theorem of Laplace transform.
- State Fourier series formula for a periodic function of period 2L in the interval (-L,L).
 State Fourier series formula for a periodic function of period 2L in the interval (-L,L).

PART-B

Answer any new questions. Each question carries 6 weightage.

- 13. Derive the expression for gradient, divergence and curl in general curvilinear coordinate system. Use the result to find the expressions for the same in circular cylindrical and spherical polar co-ordinates.
- (4. Obtain the series solution of Bessel's equation. Explain the limitations of this solution.
- 5. Derive and explain Fourier integral theorem. Use this to define Fourier transform and inverse Fourier transform.
- Explain Gram-Schmidt orthogonalisation procedure with suitable example.

 $(2 \times 6 = 12 \text{ weightage})$