4	-	-	-	-	0
ł	7	Ρ	1	6	8

(Pages:2)

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2017

(Regular/Supplementary/Improvement)
(CUCSS-PG)

CC15PST1C03 – ANALYTICAL TOOLS FOR STATISTICS-II

(Statistics)

(2015 Admission onwards)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions. Weightage 1 for each question.

- 1. Define algebraic and geometric multiplicities.
- 2. Show that the vectors (1, 1, 1), (3, 1, 2) and (2, 1, 4) are linearly independent?
- 3. Define minimal polynomial and characteristic polynomial.
- 4. Show that for an idempotent matrix A, Rank(A) = Trace(A)?
- 5. What do you mean by Jordan canonical form?
- 6. Define (i) a quadratic form and (ii) index, rank and signature of a quadratic form.
- 7. What do you mean by generalized inverse of a matrix?
- 8. Define Similar matrices. Give an example.
- 9. What is rank factorization of a matrix? (a) Prove that the geometric multiplicity of a ch??
- 10. Prove that every non-singular matrix is a product of elementary matrices.
- 11. Show that the two matrices A and P⁻¹AP have the same characteristic roots, where P is any non-singular matrix.
- 12. Show that the form $x_1^2 + 2x_2^2 + 3x_3^2 + 2x_2x_3 2x_3x_1 + 2x_1x_2$ is an indefinite quadratic form. (12 × 1 = 12 weightage)

Part B

Answer any eight questions. Weightage 2 for each question.

- 13. If A and B are two matrices of order n and Rank(A) = r, Rank(B) = s, show that $r + s n \le \text{Rank}(AB) \le \min(r, s)$
- 14. State and prove Cayley-Hamilton theorem. This bas vises soon sill svong bas state (a) VS
- 15. Given $A = \begin{bmatrix} 1 & 4 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$. Find inverse of matrix A.
- 16. Define Moore-Penrose inverse of a matrix. Show that it is unique? | Ol off sould \$1.85
- 17. Prove that the eigen vectors associated with distinct eigen values of a matrix are linearly independent.
- 18. If A is $m \times m$ idempotent matrix, then show that $: _{ods} \times m = m$ idempotent matrix, then show that
- (a) I_m − A is also idempotent.
 - (b) Each eigen value of A is 0 and 1.

- 19. Find eigen values and eigen vectors of $A = \begin{bmatrix} 8 & -4 & 6 \\ 10 & -6 & 6 \\ 8 & -8 & 10 \end{bmatrix}$.
- 20. Prove that two eigen vectors associated with two distinct eigen values of a matrix are orthogonal to each other.
- 21. If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the characteristic roots of a matrix A, show that trace $(A^2) = \sum_{i=1}^{n} \lambda_i^2$.
- 22. If A and B are square matrices of same order, show that both AB and BA will have the same characteristic roots.
- 23. Explain the spectral decomposition of a matrix.
- 24. Show that $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 2 & 2 & 3 \end{bmatrix}$ is diagonalizable over R and find P such that $P^{-1}AP$ is diagonal.

and ashrol $(8 \times 2 = 16 \text{ weightage})$

Define (i) a quadratic form and (ii) TRAP we and signature of a quadratic form.

Answer any two questions. Weightage 4 for each question.

- 25. (a) Prove that the geometric multiplicity of a characteristic root cannot exceed algebraic multiplicity of the same.
 - (b) If A is an $n \times n$ matrix with eigen values $\lambda_1, \lambda_2, \dots, \lambda_n$, then prove that:
 - I) $trace(A) = \sum_{i=1}^{n} \lambda_i$
 - II) $|A| = \prod_{i=1}^{n} \lambda_i$
- 26. (a) State and prove the necessary and sufficient condition that a real quadratic form X'AX is positive definite.
 - (b) Determine the geometric and algebraic multiplicities of eigen values of the matrix

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

- 27. (a) State and prove the necessary and sufficient condition for the diagonalizability a square matrix.
 - (b) Prove that every non-zero nilpotent matrix is not diagonalizable.
- 28. (a) Reduce the following Matrix in to its normal form and hence find rank of anilo(1 a)

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & 1 & -1 \end{bmatrix}.$$

(b) If A is a hermitian matrix, show that A is unitarily similar to a diagonal matrix.

 $(2 \times 4 = 8 \text{ weightage})$

(b) Each eigen value of A is 0 and 1: *****