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CC15P ST1 C03 - ANALYTICAL TOOLS FOR STATISTICS - 11
(Statistics)
(2015 Admission onwards)
Time: Three Hours Maximum: 36 Weightage
Part A

Answer all questions. Each question carries 1 weightage

Define Basis and Dimension.

Define subspaces.

Do the vectors a; = (1,0,2),a, = (2,0,1), a3 = (2,1,2) form a basis for R3 ?
Define non-singularity of matrices.

Define rank of a matrix. What is the rank of a non-singular square matrix of order n.
Explain Minimal polynomial.

Define Eigen values and Eigen vectors.

What is signature?
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If a matrix is symmetric, what is the nature of Eigen values?
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. State the properties of g-inverse.
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. Define positive definite and positive semi-definite matrices.
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. Describe Jordan canonical form of Matrices.
(12 x 1 = 12 Weightage)
Part B
Answer any eight questions. Each question carries 2 wightage

13. Check for linear independence and dependence of the following set of vectors V; = (4, 1, 2,1),
V,=(1,4,1,2)and V; = (0,1,2,1)

2 1 1
14. Findrankof [2 1 2
1 1 2

15. Define inner product space. Give example.

16. Show that geometric multiplicity cannot exceed algebraic multiplicity.
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18.

19.

20.
21.
22.
23.

24.

25.

26.

27.

28.

Describe the method of finding the inverse of a non singular matrix A by forming a partition of A.

Write a short note on Gram—-Schmidt process.

1 1 2
Find Eigen values and Eigen vectors of [1 0 2]
2 4 4

State and prove rank-nullity theorem.
Describe the method of finding g-inverse.
State and prove basis theorem.
If A is the g-inverse of A, show that AAA = A
6 -2 0
Using Cayley —Hamilton theorem obtain the inverse of the matrix |[-2 3 0
0 0 2
(8 x 2 = 16 Weightage)
Part C
Answer any two questions. Each question carries 4 weightage
a) Define Moore Penrose inverse of a matrix. Prove or disprove that it is unique.
b) Define geometric and algebraic multiplicity. Find geometric and algebraic multiplicity of the
a1 2
matrix A = [2 1]

a) Show that a set of non null vectors a4, a5, ..., a, orthogonal in pairs is necessarily independent.

b) Reduce the following matrix to its normal form and hence find its rank F % g ]
0 -1 -1
a) Define quadratic forms, Illustrates different forms of them.
b) Classify the following quadratic form as positive definite, positive semi-definite and indefinite
2x% + 2y? + 3z% — 4yz— 4zx + 2xy.
a) Letf = R3 — R? be defined by f(x, y,z) = (z — x, x +y). Show that f is linear mapping.
Also find kernel of f
b) Show that characteristic roots of a skew symmetric matrix are either zero or a pure imaginary
number.
(2 X 4 = 8 Weightage)
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