Reg. No....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Mathematics

MT 2C 10-NUMBER THEORY

me: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Let (m, n) = d. Prove that, for the Euler totient function ϕ , $\phi(m, n) = \phi(m) \cdot \phi(n) \cdot \left(\frac{d}{\phi(d)}\right)$.
- 2. Prove that the equation $f(n) = \sum_{d/n} g(d)$ implies $g(n) = \sum_{d/n} f(d) \cdot \mu\left(\frac{n}{d}\right)$.
- 3. If f and g are arithmetical functions, show that:

$$(f*g)' = f'*g + f*g'$$

4. For $x \ge 1$, prove that:

$$\sum_{n \le x} \wedge (n) \left[\frac{x}{n} \right] = \log [x]!.$$

- 5. State Abel's identity.
- 6. Prove that congruence is an equivalence relation.
- 7. For any integer a and any prime p, prove that:

$$a^p \equiv a \pmod{p}$$
.

- 8. State Chinese remainder theorem.
- 9. Let p be an odd prime. Prove that every reduced residue system mod p contains exactly (p-1)/2 quadratic residues and exactly (p-1)/2 quadratic non-residues mod p.

Turn over

10. If P is an odd positive integer, prove that:

$$(-1/p) = (-1)^{(p-1)/2}$$
.

- 11. In the 27-letter alphabet (with blank = 26) use the affine enciphering transformation with a = 13, b = 9 to encipher the message "HELP ME".
- 12. What do you mean by an enciphering matrix?
- 13. Explain how to send a signature in RSA cryptosystem?
- 14. What is oblivious transfer?

 $(14 \times 1 = 14 \text{ weigh})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

15. If $n \ge 1$, prove that:

$$\phi(n) = n \cdot \frac{\pi}{p/n} \left(1 - \frac{1}{p} \right).$$

- 16. Assume f is multiplicative. Prove that $f^{-1}(n) = \mu(n) f(n)$ for every square free n.
- 17. If $x \ge 1$, prove that:

$$\sum_{n \le x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right).$$

18. For $n \ge 1$, prove that the n^{th} prime \mathbf{P}_n satisfy the inequality :

$$\frac{1}{6}n\log n < p_n < 12\bigg(n\log n + n\log\frac{12}{e}\bigg).$$

19. Let *p* be an odd prime and let $q = \frac{p-1}{2}$. Prove that:

$$(q!)^2 + (-1)^q \equiv 0 \pmod{p}.$$

20. Solve the congruence:

$$25x \equiv 15 \pmod{120}.$$

21. Let p be an odd prime. Prove that:

$$\sum_{\substack{r=1\\ (r/p)=1}}^{p-1} r = \frac{p(p-1)}{4} \text{ if } p \equiv 1 \pmod{4}.$$

- 22. Find the inverse of the matrix $\begin{pmatrix} 15 & 17 \\ 4 & 9 \end{pmatrix}$ mod 26.
- 23. Find the discrete log of 28 to the base 2 in F_{37}^* using the Silver-Pohlig-Hellman algorithm. (2 is a generator of F_{37}^*).
- 24. Briefly describe a method to construct the Knapsack cryptosystem.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries 4 weightage.

- 25. Prove that the set of all arithmetical functions f with $f(1) \neq 0$ forms an Abelian group under Dirichlet multiplication.
- 26. Let $\{a(n)\}$ be a non-negative sequence such that:

$$\sum_{n \le x} a(n) \left[\frac{x}{n} \right] = x \log x + O(x) \text{ for all } x \ge 1.$$

Prove that there is a constant B > 0 such that:

$$\sum_{n \le x} a(n) \le B(x) \text{ for all } x \ge 1.$$

- 27. Prove that the set of lattice points visible from the origin contains arbitrarily large square gaps.
- 28. Explain the advantages and disadvantages of public key cryptosystem as compared to classical cryptosystems.

 $(2 \times 4 = 8 \text{ weightage})$