(Pages: 2)

Nan	1e	 	 	
Reg.	No.	 		

7,7

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Chemistry

CH 2C 05—PHYSICAL CHEMISTRY—I

(2010 Admissions)

: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries a weightage of 1.

- 1 What is Debye Falkenhagen effect?
- Write equation for the activity of the following types of electrolytes in terms of molal concentration and mean ionic activity coefficient:

(a)
$$MX_3$$
; (b) M_2X_3 .

- 3. Explain the term "Concentration polarization".
- Define half-wave potential. Explain its significance.
- 5. Write Hermann-Maugon notation for the following:-

- 5. Explain with example "glide plane".
- 7. Explain the term "Brellouin zone".
- 3. Distinguish between Ferromagnetism and Antiferromagnetism with one example for each.
- Define Coulomb operator. Explain its significance.
- What is GTO? Write one example.
- Explain with example "bioluminescence".
- What are the factors affecting nuclear stability? Explain.
- Name two IR sources used in spectroscopy.
- What is the role of "interferometer" in FTIR? Explain.

 $(14 \times 1 = 14 \text{ weightage})$

Section B

Answer any **seven** questions. Each question carries a weightage of 2.

- 15. "Single ion activity coefficient cannot be determined experimentally." Justify the statement.
- 16. Write Debye Hückel limiting law. Suggest one method to verify the law.
- 17. What are the advantages of "dropping mercury electrode" in polarography? Discuss.
- 18. Show that 5-fold axis of rotation cannot exist in solids.
- 19. Draw stereographic projection for a monoclinic system. Explain.
- 20. Briefly explain Hartree Fock SCF method.
- 21. Derive Stern-Volmer equation.
- 22. Explain the working of a scintillation counter.
- 23. Briefly explain the detecting system in NMR spectrometer.
- 24. Discuss briefly "compound nucleus theory of nuclear reactions".

 $(7 \times 2 = 14 \text{ weight})$

Section C

Answer any **two** questions.

Each question carries a weightage of 4.

- 25. Derive Debye Hückel Onsager equation.
- 26. Write a brief account of high temperature superconductors.
- 27. Briefly discuss the instrumentation in FTIR.
- 28. Discuss the kinetics of photochemical dimerization of anthracene.

 $(2 \times 4 = 8 \text{ weigh})$