SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Mathematics

MT 2C 06-ALGEBRA-II

Three Hours

Maximum: 36 Weightage

Part A

Answer all questions (1-14)Each question has weightage 1.

- Verify whether $\{0, 3\}$ is an ideal of \mathbb{Z}_6 .
- Verify whether $\{(0,2n): n \in z\}$ if a prime ideal of $\mathbb{Z} \times \mathbb{Z}$.
- Verify whether the field Z₅ is an extension of the field Z₃.
- Verify whether $Q(\sqrt{2})$ is an algebraic extension of Q.
- Which of the following real numbers is constructible $\sqrt{2}$, $\sqrt[3]{2}$, $\sqrt[3]{5}$, $\sqrt[4]{3}$.
- Verify whether $\varphi: Q(\sqrt{2}) \to Q\sqrt{3}$ defined by $a+b\sqrt{2} \mapsto a+b\sqrt{3}$ for $a,b \in Q$ is an isomorphism of fields.
- Show that the field R of reals is not algebrically closed.
- Let α be the real cube root of 2. Verify that $Q(\alpha)$ is not a splitting field.
- Find the order of the group $G(Q(\alpha)/(Q))$ where α is the real cube root of 2.
- Give an example of an infinite field of characteristic 2.
- Describe the Galois group $G\left(Q\left(\sqrt{2}\right)/Q\right)$.
- Let K be a finite field of 8 elements and $F = Z_2$. Give the order of the Galois group G (K/F).
- 3. Define the n^{th} cyclotomic polynomial.
- Give an example of a solvable group.

 $(14 \times 1 = 14 \text{ wrightage})$

Part B

Answer any seven questions from the following questions (15 – 24). Each question has weightage 2.

- 15. Find all prime ideals of the ring Z₈.
- 16. Let R be a ring with identity. Show that the map $\phi: Z \to \mathbb{R}$ defined by $\phi(n) = n \perp$ homomorphism.
- 17. Let $p(x) = x^2 + 1 \in Q[x]$. Let $I = \langle p(x) \rangle$ be the ideal generated by p(x). Show that x + I is a of p(x) in Q[x]/I.
- 18. Let $f(x) = x^4 \bot \in Q[x]$. Let $\alpha \notin Q$ be a zero of f(x). Find the degree $[Q(\alpha):Q]$.
- 19. Let α be a zero of $x^2 + 1 \in \mathbb{Z}_3[x]$. Find the number of elements in $\mathbb{Z}_3(\alpha)$.
- 20. Let σ be a automorphism of $Q(\sqrt{2}, \sqrt{3})$ with $\sigma(\sqrt{2}) = -\sqrt{2}$ and $\sigma(\sqrt{3}) = \sqrt{3}$. Find the field of σ .
- 21. Let $f(x) \in Q[x]$ be irreducible and α, β be zeros of f(x) in \overline{Q} . Let τ be an automorphism of Such that $\tau(\alpha) = \beta$. Let $\tau_x : \overline{Q}[x] \to \overline{Q}[x]$ be the natural isomorphism with $\tau_x(x) = x$. Show $\tau_x(f(x)) = f(x)$.
- 22. Let $F \le E \le K$ and K be a finite normal extension of a filed F. Show that K is a normal extension of E.
- 23. Let K be a field of a 9 elements and let $F = Z_3$. Show that $\sigma: K \to K$ defined by $\sigma(a) = a^3$ $a \in K$ is an automorphism of K leaving F fixed.
- 24. Let K be the splitting field of $x^4 + \bot$ over Q. Show that G (K/Q) is of order 4.

 $(7 \times 2 = 14 \text{ weighta})$

Part C

Answer any two questions from the following questions (25-28). Each question has weightage 4.

25. Define maximal ideal. Show that if R is a commutative ring with identity and if M is a maximideal of R then R/M is a field. Give an example of a commutative ring R with identity, a maximideal M of R and describe the field R/M.

Let E be an extension of a field F and let $\alpha \in E$. Prove that

- (a) $\varphi_{\alpha}: \mathbb{F}[x] \to \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$ for $f(x) \in \mathbb{F}[x]$, is a homomorphism.
- (b) If α is algebraic over F then Ker $\phi_{\alpha}\neq (0).$
- (c) If α is transcendental over F then ϕ_α is one-to-one.

Define separable extension. Show that every finite extension of a field of characteristics zero is a separable extension.

Define normal extension. Let be a field and $F \le E \le K \le \vec{F}$. Show that if K is a normal extension of F then K is a normal extension of E.

Show that G(K/E) is a subgroup of G (K/F).

 $(2 \times 4 = 8 \text{ weightage})$