Name	•••••
Reg. No.	

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Physics

PHY 2C 05—QUANTUM MECHANICS

(2012 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Section A

Answer all questions.

Each question carries weightage of 1.

- 1. Define a linear vector space. What are its properties?
- 2. Explain momentum representation. What is the operator for position in the momentum representation?
- 3. Briefly explain the three pictures of time development in quantum mechanics.
- 4. What are Clebsch-Gordan coefficients? Mention their uses.
- 5. Write a brief note on Pauli spin matrices.
- 6. Give the commutation relations that define angular momentum operator in quantum mechanics.
- 7. Discuss the symmetries associated with the different conservation laws in physics.
- 8. What is time reversal operation? Mention its significance in physics.
- 9. Distinguish between symmetric and antisymmetric wave functions.
- 10. Explain the differences between the Born approximation and partial wave method in scattering.
- 11. Explain the physical significance of scattering length.
- 12. What is meant by the Ramsauer-Townsend effect?

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any **two** questions.

Each question carries a weightage of 6.

- 13. What are the fundamental postulates of quantum mechanics? Explain their significance.
- 14. Using the Schrödinger picture, obtain the energy eigenvalues and eigenfunctions of a linear harmonic oscillator.

Turn over

- 15. Outline the method of partial wave analysis for low energy scattering. Obtain the expression the total cross section.
- 16. Establish the importance of the symmetry of the wave functions, taking the example of the grostate of helium atom.

 $(2 \times 6 = 12 \text{ weight})$

Section C

Answer any four questions.

Each question carries 3 weightage.

- 17. If A and B are Hermitian operators, show that (AB + BA) is Hermitian and (AB BA) is Hermitian.
- 18. In beta decay of a nucleus, an electron is emitted. If the nucleus is assumed to consist of pro and electrons, calculate the minimum energy of the electron confined within a nucleus of ra 1.5 fm., using Heisenberg's uncertainty relation. Calculate also the minimum energy of the proconfined within the nucleus.
- 19. Evaluate Clebsch-Gordan coefficients for angular momentum coupling of two spin half partic
- 20. (a) Show that if a particle has the wave function $\psi = \exp{(ikz)}$, the z-component of its ang momentum is zero.
 - (b) Show that the expectation values of $\,L_X^{}$ and $\,L_Y^{}$ are zero for a system which is in an estate of $L_Z^{}$.
- 21. Using the Slater determinant, prove the Pauli exclusion principle.
- 22. Obtain an expression for scattering cross-section for a beam of particles scattered by a rigid sph

 $(4 \times 3 = 12 \text{ weight})$