0	0	1	0	0
n	-5	E 3	9	4 D
U	U	v	v	v

(Pages: 3)

Nai	me	 	 	
				42

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Mathematics

MT 2C 07-REAL ANALYSIS-II

me: Three Hours

Maximum: 36 Weightage

Part A

Short answer questions 1-14. Answer all questions. Each question has 1 weightage.

- 1. Let X be a vector space and let $\dim X = n$. Prove that a set E of n vectors spans X if and only if E is independent.
- 2. Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and let $x \in \mathbb{R}^n$. Prove that A'(x) = A.
- 3. Define contraction mapping on a metric space and give an example of it.
- 4. Let $f = (f_1, f_2)$ be the mapping of \mathbb{R}^2 into \mathbb{R}^2 given by

$$f_1(x,y) = e^x \cos y, \quad f_2(x,y) = e^x \sin y.$$

Show that the Jacobian of f is not zero at any point of \mathbb{R}^2 .

- 5. Find the Lebesgue outer measure of the set $\{1 \pm \frac{1}{2^n} : n = 1, 2, 3, \ldots\}$.
- 6. Let A and B be measurable sets such that $A \subseteq B$. Prove that $m^*(A) \leq m^*(B)$.
- 7. Is the set of irrational numbers in the interval [1, 100] measurable? Justify your answer.
- 8. Prove that constant functions are measurable.
- 9. Give an example where strict inequality occur in Fatou's lemma.
- 10. Show that if f is integrable, then so is |f|.
- 11. Let $\{f_n\}$ be a sequence of measurable functions defined on a measurable set E of finite measure. If $f_n \to f$ a.e., then prove that $\{f_n\}$ converges to f in measure.
- 12. Show that $D^{+}[-f(x)] = -D_{+}f(x)$.
- 13. Show that if $a \le c \le b$, then $T_a^b = T_a^c + T_c^b$.
- 14. Prove that sum of two absolutely continuous functions is continuous. $(14 \times 1 = 14 \text{ weightage})$ Turn over

Part B

Answer any seven from the following ten questions (15–24).

Each question has weightage 2.

- 15. Let Ω be the set of all invertible linear operators on \mathbb{R}^n . Prove that Ω is an open subset of $L\left(\mathbb{R}^n\right)$
- 16. Let

$$f(x,y) = \begin{cases} 0 & \text{if } (x,y) = (0,0) \\ \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0). \end{cases}$$

Prove that $(D_1f)(x,y)$ and $(D_2f)(x,y)$ exist at every point of \mathbb{R}^2 .

17. If E_1 and E_2 are measurable, then prove that

$$m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2).$$

- 18. Prove that sum of two measurable functions defined on a same measurable set is measurable.
- 19. Prove that the characteristic function χ_E is measurable if and only if E is measurable.
- 20. Let E_1, E_2, \ldots, E_n be disjoint measurable sets and let $\varphi = \sum_{i=1}^n a_i \chi_{E_i}$. Prove that
 - $\int \varphi = \sum_{i=1}^n a_i m(E_i).$
- 21. Let E be a measurable set and let f, g be integrable over E. Prove that f + g is integrable over E and

 $\int_{E} f + g = \int_{E} f + \int_{E} g.$

22. Let f be a function defined by

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ x \sin(\frac{1}{x}) & \text{if } x \neq 0. \end{cases}$$

Is f differentiable at x = 0? Justify your answer.

- 23. If f is of bounded variation on [a, b], then prove that f'(x) exists for almost all x in [a, b].
- 24. If f is absolutely continuous on [a, b], then prove that f is of bounded variation on [a, b].

Part C

Answer any two from the following four questions (25-28).

Each question has weightage 4.

- 25. (a) Let E be an open subset of \mathbb{R}^n and f maps E into \mathbb{R}^m . If f is differentiable at a point $x \in E$, then prove that the partial derivatives $(D_j f_i)(x)$ exist.
 - (b) If [A] and [B] are n by n matrices, then prove that

$$\det([A][B]) = \det[A] \det[B].$$

- 26. (a) Prove that outer measure of an interval is its length.
 - (b) Let $\{E_i\}$ be a sequence of measurable sets. Prove that

$$m\left(\bigcup_{i} E_{i}\right) \leq \sum_{i} m(E_{i}).$$

- 27. (a) State and prove bounded convergence theorem.
 - (b) Let $\{f_n\}$ be a sequence of non-negative measurable functions and $f_n(x) \to f(x)$ almost everywhere on a set E. Prove that

$$\int_E f_n \le \underline{\lim} \int_E f_n.$$

18. Let f be an increasing real valued function on the interval [a, b]. Prove that f is differentiable almost everywhere, the derivative f' is measurable and

$$\int_a^b f'(x) \le f(b) - f(a).$$

 $(2 \times 4 = 8 \text{ weightage})$