69	00	7
00	US	

(Pages: 2)

Name.....52

Reg. No.....

SECOND SEMESTER M.Sc. DEGREE EXAMINATION, JUNE 2014

(CUCSS)

Physics

PHY 2C 08—COMPUTATIONAL PHYSICS

(2012 Admission)

me : Three Hours

Maximum: 36 Weightage

Section A

Answer all questions, each question carries weightage 1.

- 1. What is a module in python?
- 2. List the different operator in python.
- 3. With suitable example explain what is a random variable?
- 4. Bring out the difference between log log () and semilog x ().
- 5. Explain how to create an array from a regular python list.
- 6. Discuss the syntax of the function for saving and restoring arrays.
- 7. Explain with general format plot () function and show ().
- 8. Write a program to plat exponential function in Python.
- 9. Find the inverse of a function F(x) = 4x + 7.
- 0. Discuss the interpolation with cubic spline and give its merits.
- 1. State and explain Bolzano's theorem.
- 2. What is the principle of logistic map?

 $(12 \times 1 = 12 \text{ weightage})$

Section B

Answer any two questions, each has weightage 6.

- 3. What is Python? Discuss its features. List and explain the rules for local variables and global variables in Python.
- 4. What is the difference between tuple and a list. Explain the main operator on a dictionary.

Turn over

- 15. Explain Monte-Carlo simulation. How it used to integrate a function over a complicated don
- 16. Define DFT for a sequence x(n). Explain how to calculate DFT of N sampled points and we program.

 $(2 \times 6 = 12 \text{ weight})$

Section C

Answer any four questions, each has a weightage 3.

- 17. Write a program to find largest and smallest in a set of numbers.
- 18. Write a program to find the biggest three numbers.
- 19. Find the inverse of $f(x) = \frac{x+1}{x}$.
- 20. Suppose $s(x) = \begin{cases} 0 & x \le 2 \\ (x-2)^3 & 2 < x \end{cases}$. Is s(x) a cubic spline? Justify.
- 21. Write a program to plot v-t graph of simple harmonic oscillator.
- 22. Write an algorithm for evaluating the value of π by Monte-Carlo simulations.

 $(4 \times 3 = 12 \text{ weight})$