SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014

(U.G.-CCSS)

Complementary Course

MM 2C 02-MATHEMATICS

Time: Three Hours

Maximum: 30 Weightage

Unit I

Answer all **twelve** questions. Each question carries ¼ weightage.

1. Tanh x is equal to:

$$(a) \quad \frac{e^x - e^{-x}}{2}.$$

$$\frac{e^x + e^{-x}}{2}.$$

(c)
$$\frac{e^x - e^{-x}}{e^x + e^{-x}}$$
.

(d)
$$\frac{e^x + e^{-x}}{e^x - e^{-x}}$$

2. Write $csch^{-1}x$ as a logarithmic function:

3. Find
$$\frac{d}{dx} \left(6 \sinh \frac{x}{3} \right)$$
.

4. Find
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$
.

5. The n^{th} term of the sequence

6. Find
$$\lim_{n\to\infty} \sqrt[n]{3n}$$
.

7. Find the sum of the series
$$\sum_{n=1}^{\infty} \frac{3^{n-1}-1}{6^{n-1}}.$$

8. Test the convergence of the series

$$1 + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \dots$$

- 9. Define the absolute convergence of a series $\sum a_n$.
- 10. Find the Cartesian equation of the curve $r = 6\sin \theta$.
- 11. Write the polar equation of the hyperbola with k=2 and $e=\frac{3}{2}$.
- 12. $f(x, y) = 100 x^2 y^2$. Find the level curve of f(x, y) = 75.

 $(12 \times \frac{1}{4} = 3 \text{ weighta})$

Unit II

Answer any **nine** questions. Each question carries 1 weightage.

- 13. Differentiate $\tanh \sqrt{1+t^2}$ with respect to t.
- 14. Find $\int \operatorname{sech}^2\left(x-\frac{1}{2}\right) dx$.
- 15. Find $\int_{0}^{2} \frac{dx}{1-x^2} dx$.
- 16. Find the sum of the series $\sum_{n=1}^{\infty} \frac{6}{(2n-1)(2n)}$
- 17. Does the series $1 + \frac{1}{3} + \frac{1}{7} + \frac{1}{15} + \dots$ converge?
- 18. Show that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ is absolutely convergent.
- 19. For what value of x does the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ converge?
- 20. Find the Taylor series expansion of $f(x) = \ln(1+x)$ at x = 0.

- 11. Find the polar equation of the elliptic $4x^2 + 9y^2 = 36$.
- 22. Write the centre and radius of the circle $r + \cos \theta = 0$.

23. Find
$$\lim_{p \to (0,-2,0)} \left(\ln \sqrt{x^2 + y^2 + z^2} \right)$$
.

24. Find
$$\frac{\partial f}{\partial x}$$
 at $(4, -5)$ if $f(x, y) = x^2 + 3xy + y$.

 $(9 \times 1 = 9 \text{ weightage})$

Unit III

Answer any **five** questions. Each question carries 2 weightage.

25. Show that
$$\cosh^{-1} x = \ln \left(x + \sqrt{x^2 - 1}\right), x \ge 1.$$

26. Find
$$\int_{-1}^{\infty} \frac{d\theta}{\theta^2 + 5\theta + 6}$$
.

27. Show that
$$\frac{1+2 \ln 2}{9} + \frac{1+3 \ln 3}{14} + \frac{1+4 \ln 4}{2} + \dots$$
 diverges.

28. Find the points of intersection of the pair of curves
$$r = 1 + \cos \theta$$
 and $r = 1 - \cos \theta$.

29. If
$$f(x, y) = x \cos y + y e^x$$
 find $\frac{\partial^2 f}{\partial x dy}$ and $\frac{\partial^2 f}{\partial y^2}$.

30. Express
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial s}$ interms of r and s where $w = x^2 + y^2$, $x = r + s$, $y = r - s$.

31. Find the directional derivative of
$$f(x, y) = 3xy - y^2$$
 at $(5, 5)$ with directions of $\overline{A} = 4i + 3j$.

32. Find the area that lies inside the circle
$$r = 1$$
 and outside $r = 1 - \cos \theta$.

 $(5 \times 2 = 10 \text{ weightage})$

Unit IV

Answer any two questions.

Each question carries 4 weightage.

- 33. (a) Evaluate $\int_{2}^{\infty} \frac{x+3}{(x-1)(x^2+1)} dx$.
 - (b) Investigate the convergence of $\sum_{n=1}^{\infty} \frac{4^n (n!)^2}{(2n)!}$.
- 34. Find the length of the cardioid $r = 1 \cos \theta$.
- 35. Find the linearization of $f(x, y) = x^2 xy + \frac{y^2}{2} + 3$ at the point (3, 2).

 $(2 \times 4 = 8 \text{ weightage})$