627	06
04	VV

(Pages: 3)

Name.....

Reg. No....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014

(UG-CCSS)

Complementary Course-Physics

PH 2C 03—MECHANICS, RELATIVITY WAVES AND OSCILLATIONS

ne: Three Hours Maximum: 30 Weightage

- I. Answer all twelve questions, each question carries 1/4 weightage:
 - 1 The meson has a speed 0.8 c relative to ground. If its time of flight in its frame is 2×10^{-8} sec, how far the meson travels relative to ground?
 - (a) 2m

(b) 4m.

(c) 6m

- (d) 8m.
- 2~ At what velocity along its length will a rod contract 50% :
 - (a) c/2.

(b) $\frac{\sqrt{3} c}{2}$

(c) $\frac{\sqrt{3} c}{4}$

- (d) $\frac{\sqrt{3} c}{5}$.
- 3 Energy mass relation is:
 - (a) E = mc.

(b) $E = p^2 c$.

(c) $E = mc^2$.

- (d) $E = mc^3$.
- 4 Two particles are travelling in opposite direction s with speed $0.9\,c$ relative to the laboratory. Their relative speed is
 - (a) 0.0948 c.

(b) Zero. Mene landand odd mislexit at

(c) c.

- (d) 0.995 c.
- 5 The momentum energy relation is:
 - (a) E = p/m.

(b) $E = p^2 / m$.

- (c) $E = p^2 / 2m$.
- (d) E = p/2m.

6 A particle executing SHM has amplitude 0.6 m. The time taken by particle in cove

(b) 0.26 s.

distance 0.3m from mean position, if time period is 3.14 s is:

(a) 2.6 s.

		(c) 6.2 s.	(d)	0.62s.	
	7	The amplitude of a damped oscilla $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second, then x is equal to $(1/x)$ after 3 t second.	ator because to	comes $\frac{1}{2}$ after t second. If the amplitude be	
		(a) 0.8	(b)	Answer all twelve questions, each que.8	
				1 The meson has a speed 0 8 c relati-4.	
	8	The relation between driving frequency f_d and natural frequency f is:			
		(a) $f_d = f$.	(b)	$f_d = f. m2 m2 m2$	
		(c) $f_d = f$.	(d)	$f_d = f$ ma (o)	
	9	Friction is — force.			
	10	TEM stands for		(2 × 4 = 8 weights)	
	11	The expression for energy density i	s —	(a) - a/2.	
	12	According to Schrodinger a particle	is equiv	ivalent to a :	
		(a) Single wave.	(b)	Wave packet.	
		(c) Light wave.	(d)	Cannot behave as wave.	
				$(12 \times \frac{1}{4} = 3 \text{ weig})$	
II.	Ans	swer all nine questions. Each question	n carrie	es 1 weightage.	
	13	What is Coriolis force?			
	14	Explain the difference between iner	rtial fra	ame and non inertial frame.	
	15	Explain the potential energy curve	(d)	(a) 0.0948 c	
	16	16 Explain the significance of mass energy relation.			
	17	Define Simple Harmonic Motion.			
	18	What do you meant by energy dens	ity?		
	19	Explain the expression for time per	iod of a		
	20	Write down an expression for equation of plane progressive wave and explain each ter			
	21	1 Discuss the principle of Electron Microscope.			
				$(9 \times 1 = 9 \text{ weight})$	

- II. Answer any five questions, each question carries 2 weightage:
 - 22 Show that mass of the particle moving with 4/5th the speed of light will appear as 5/3 times its rest mass.
 - 23 Distinguish between centrifugal force and Coriolis force with suitable example.
 - 24 With suitable example explain motion of a body under central force.
 - 25 Obtain the period of oscillation of a simple pendulum.
 - 26 State and explain Fourier theorem.
 - 27 What are the postulates of quantum mechanics?
 - 28 With suitable example explain Eigen value and Eigen function.

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Answer any two, each question carries 4 weightage:
 - 29 Derive the Galilean transformation equation and explain its invariance.
 - 30 What are the postulates of special theory of relativity and explain the significance of Michelson Morley experiment.
 - 31 Derive Time dependent Schrodinger equation of matter waves. Give the physical interpretation of the wave function.

 $(2 \times 4 = 8 \text{ weightage})$