Name.....

Reg. No....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014

(U.G.—CCSS)

Complementary Course—Statistics ST 2C 02—PROBABILITY DISTRIBUTIONS

ime: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries ¼ weightage.

- 1. The joint distribution function of $(X,\,Y)$ is equivalent to the probability :
 - (a) p(X = x, Y = y).

(b) $p(X \le x, Y \le y)$.

- (c) $p(X = x | Y \le y)$.
- (d) $p(X \le x, Y = y)$.
- 2. If X and Y are independent r.vs. then:
 - (a) $Cov(X, Y) = E(X) \cdot E(Y)$.
- (b) Cov(X, Y) = E(X Y).
- (c) $^{4}E(X Y) = E(X) \cdot E(Y)$.
- (d) $E(X Y) < E(X) \cdot E(Y)$.

- 3. E(EX/Y) =
 - (a) E(X).

(b) E(Y).

(c) E (X/Y).

(d) E(Y/X).

- 4. Cov(c + X, d + Y) =
 - (a) (c+d) Cov (X, Y).
- (b) cd Cov (X, Y).
- (c) $c^2 d^2 \text{ Cov } (X, Y)$.

- (d) Cov (X, Y).
- 5. If X follows uniform distribution in [a, b] then V(X) =
 - (a) $\frac{(b-a)^2}{2}$.

(b) $\frac{(b-a)^2}{12}$

(c) $\frac{b+a}{2}$.

(d) $\frac{(b+a)^2}{12}$.

6. The distribution for which mean = variance is:

7	(a)	Poisson.	(b)	Binomial.
	(c)	Uniform.	(d)	Exponential.
7.	The mo	ode of the geometric distribution $p($		$\left(\frac{1}{2}\right)^{x}$; $x = 1, 2, 3, \dots$ is:
	(a)	Zero.	(b)	One.
	(c)	1/2.	(d)	Does not exist.
8.	If log _e X follows normal distribution, then probability distribution of X is:			
	(a)	Exponential.	(b)	Normal.
	(c)	Rectangular.	(d)	Log normal.
9.	If $X \sim N(0,1)$ then $p(1 \times 1 < 1)$ is:			
	(a)	0.3413.	(b)	0.6826.
	(c)	0.1587.		0.3174.
10.	If X denote the number appearing when a fair die is thrown, then the probability distrib of X is:			
	(a)	Binomial.	(b)	Geometric.
	(c)	Uniform.	(d)	Poisson.
11.	The po	ints of inflexion of the normal curve	are	(X (X) \$1 - (o)
	(a)	μ±σ.	(b)	μ±1.
	(c)	μ±3σ.	(d)	μ±3.
12.	. For a binomial distribution, mean = 4 and variance = $\frac{4}{3}$. Then $p(X = 0)$ is:			
	(a)	$\left(\frac{2}{3}\right)^6$.	(b)	$\left(\frac{1}{3}\right)^6$.
	(c)	$6\left(\frac{1}{3}\right)^6$.	(d)	$6\left(\frac{2}{3}\right)^6$.
•				$(12 \times \frac{1}{4} = 3 \text{ weigh})$

Part B (Short Answer Type Questions)

Answer all questions.
Each question carries 1 weightage.

- 13. Define covariance of (X, Y) in terms of expectations.
- 14. Define Pareto distribution.
- 15. If $X \sim N(25, 3)$ and $Y \sim N(20, 4)$ and X and Y are independent, then find the distribution of X + Y.
- 16. Define conditional p.d.f of Y/X.
- 17. If X follows Beta distribution of type 1 with parameters m and n, what is its mean.
- 18. Define Cauchy distribution.
- 19. If $X \sim N(16, 2)$, find an upper bound for p(|X-16| > 6) using Chebychev's inequality.
- 20. Define convergence in probability.
- 21. What is the m.g.f. of N (μ, σ) .

 $(9 \times 1 = 9 \text{ weightage})$

Part C (Short Essay Type Questions)

Answer any **five**.

Each question carries 2 weightage.

22. X and Y are discrete r.vs. having joint p.d.f.
$$f(x, y) = \frac{2x + y}{27}x = 0, 1, 2, y = 0, 1, 2.$$

Examine whether X and Y are independent.

23.
$$f(x,y) = 8 xy$$
 $0 < x < y < 1$ find E (Y/X).

- 24. Show that for a Poisson distribution with unit mean, M.D. about mean is $\frac{2}{e}$.
- 25. Find the mean and variance of a Geometric distribution $f(x) = q^x \cdot p$; $x = 0, 1, 2, 3, \dots$

- 26. State Lindeberg-Levy form of CLT.
- 27. Show that a linear combination of independent normal variates is also a normal variate.
- 28. Obtain the m.g.f. of an exponential distribution and hence find its mean and variance.

 $(5 \times 2 = 10 \text{ weightage})$

Part D (Long Essay Type Questions)

Answer any two.

Each question carries 4 weightage.

29. If μ_r is the r^{th} central moment of the binomial distribution B (n, p), prove that:

$$\mu_{r+1} = pq \left[\frac{d\mu r}{dp} + nr \; \mu_{r-1} \right]. \; \; \text{Hence obtain} \; \mu_2 \; \text{and} \; \mu_3.$$

- 30. (a) State important properties of normal distribution.
 - (b) Of a large group of students, 5% are under 150 cm and 40% are between 150 cm and 162 cm in height. Assuming normal distribution, find Mean and SD of height.
- 31. (a) State Weak law of large numbers.
 - (b) If X_i assumes values i and -i with equal probabilities, show that the law of large numbers cannot be applied to the independent variables $X_1, X_2, X_3 \dots$

 $(2 \times 4 = 8 \text{ weightage})$