16U112

Reg. No:

FIRST SEMESTER UG DEGREE EXAMINATION, NOVEMBER 2016

(Regular/ Supplementary/ Improvement) (CUCBCSS - UG)

CC15UMAT1B01-FOUNDATIONS OF MATHEMATICS

(Mathematics Core course) (2015 Admission onwards)

Time: Three Hours Maximum: 80 Marks

I. Answer all questions:

- 1. Find the domain of $f(t) = \frac{1}{\sqrt{t}}$.
- 2. The range of the function $y = x^2$ is......
- 3. Let |x| denote the integer floor function at x then |-3.2| =
- 4. $\phi \times A =$
- 5. The graph of $y = (x-3)^3 2$ is the graph of $y = x^3$ shifted
- 6. What is meant by 'the power of continuum'.
- 7. Is 1+3=6 a proposition?
- 8. State true or false." If a relation R is symmetric, then R^{C} is symmetric."
- 9. Let $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Write down a partition of S.
- 10. Let $A = \{1,2,3,4\}$ and $R = \{(1,2),(2,3),(3,1)\}$. Then $R^2 = ...$
- 11. Give an example of a poset.
- 12. The points of discontinuity of the function $f(x) = \frac{\cos x}{x+2}$ is

 $(12 \times 1 = 12 \text{ Marks})$

II. Answer any nine questions.

- 13. Define characteristic function of a set A.
- 14. Show that $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ are not equivalent.

15. Find
$$\lim_{x \to -2} \frac{-2x - 4}{x^3 + 2x^2}$$

- 16. Graph the circle $x^2 + y^2 4x \frac{9}{4} = 0$
- 17. Prove that the function $f(x) = \sqrt{4 x^2}$ is continuous on [-2, 2].
- 18. Show that $\lim |f(x)| = 0$ then $\lim f(x) = 0$
- 19. Establish Intermediate Value Theorem.
- 20. Prove that the relation $x \equiv y \pmod{5}$ on the set of integers is an equivalence relation.
- 21. Let $A = \{1,2,3,4\}$ Draw the directed graph of the relation $R = \{(1,1),(2,2),(2,3),(3,2),(4,2),(4,4)\}.$
- 22. Let $X = \{1,2,3...9\}$ Find the cross partition of the following partitions of X $P_1 = [\{1,3,5,7,9\},\{2,4,6,8\}]$

$$P_2 = [\{1, 2, 3, 4\}, \{5, 7\}, \{6, 8, 9\}]$$

- 23. Verify that $p \lor p \equiv p$ and $p \land p \equiv p$.
- 24. If R is a partial order on a set A prove that R^{-1} is also a partial order on A.

 $(9 \times 2 = 18 \text{ marks})$

III. Answer any six questions.

- 25. Show that the set P×P is countably infinite where P denote the set of positive integers.
- 26. Find a formula for the inverse of $g(x) = \frac{2x-3}{5x-7}$
- 27. Find a value of $\delta > 0$ such that $0 < |x x_0| < \delta \Longrightarrow |f(x) L| < \varepsilon$ where $f(x) = \sqrt{19 x}$, L=3, $x_0 = 10$ and $\varepsilon = 1$.
- 28. Find the domain and range of $f(x) = \frac{1}{\sqrt{4-x^2}}$
- 29. Define a partial ordering. Verify the relation "a divides b" is a partial ordering on the set of positive integers.
- 30. Let n denote a positive integer. Suppose a function L is defined as follows

$$L(n) = \begin{cases} 0, & if n = 1 \\ L\left(\left[\frac{n}{2}\right]\right) + 1, & if n > 1 \end{cases}$$
 Where [x] denotes the integer function of x. Find L(25).

- 31. Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is a tautology.
- 32. Let $S=\{1,2,...20\}$. Let \equiv be the equivalence relation on S defined by congruence modulo 7. Then find the quotient set S/\equiv
- 33. Sketch the relation $y \le x^2$ in the plane \mathbb{R}^2 .

 $(6 \times 5 = 30 \text{ Marks})$

IV. Answer any two questions.

- 34. a) Graph the parabola $y = x^2 2x 3$. Label the vertex, axis and intercepts.
 - b) Find the center and radius of the circle $x^2 + y^2 + 4x 6y 3 = 0$.
- 35. a) Show that $f(x) = \frac{x^2 + x 6}{x^2 4}$ is not continuous at x = 2, but has a continuous extension to x=2. Find that extension.
 - b) For what values of a, $f(x) = \begin{cases} x^2 1, & x < 3 \\ 2ax, & x \ge 3 \end{cases}$ is continuous at every x.
- 36. Let A be the set of integers and let \sim be a relation on $A \times A$ defined by $(a,b) \sim (c,d)$ iff a+d=b+c.
 - (a) Prove that ~ is an equivalence relation
 - (b) If $A = \{1, 2,, 9, 10\}$, find the equivalence class of (2, 5).

 $(2 \times 10 = 20 \text{ Marks})$
