Reg. No.....

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2016

(Regular/ Supplementary/ Improvement) (CUCBCSS - UG)

CC15UMAT1C01- MATHEMATICS (Mathematics Complementary course) (2015 Admission onwards)

Time: 3 hrs

Max Mark: 80

I Answer all questions

(12x1 = 12 Marks)

- 1. The function $f(x) = \frac{|x|}{x}$ is not continuous at $x = \dots$
- 2. Evaluate $\lim_{x \to \infty} \frac{5x^2 + 8x 3}{3x^2 + 2}$
- 3. At what points do the graph of the function $f(x) = x^2 + 4x 1$ has horizontal tangents
- 4. What is the parametric form of $x^2 + y^2 = 4$
- 5. How fast does the area of the circle change with respect to the diameter when the diameter is 8m.
- 6. The interval on which the function f given by $f(x) = 2x^3 3x^2 36x + 7$ decreasing
- 7. The horizontal asymptote for the curve $y = \frac{1}{x}$ is......
- 8. If f(x) = -9 on [-1,6], $\int_{-1}^{6} f(x) dx = \dots$
- 9. State the mean value theorem for the definite integrals.
- 10. The dominant terms of $f(x) = \frac{x^2 4}{x 1}$ are
- 11. Find dy/dx if $y = \int_0^{\tan x} \frac{dt}{1+t^2}$
- 12. Evaluate $\int_{-\pi}^{\pi} \sin^2 x \, dx$

II Answer any nine questions

(9x2 = 18 Marks)

- 13. Find $\lim_{x \to 0^+} \frac{|x|}{x}$ and $\lim_{x \to 0^-} \frac{|x|}{x}$
- 14. State Sandwich theorem and use it to find $\lim_{x \to 0} g(x)$ if $3 x^2 \le g(x) \le 3 \sec x \ \forall x$
- 15. Find the linearization of $f(x) = x^3 x$ at x = 1
- 16. Evaluate $\lim_{x \to 1} \left(\frac{1-x}{\ln x} \right)$
- 17. Find the average value of $f(x) = 3x^2 3$ on [0,1]
- 18. Find the function f(x) whose derivate is $\sin x$ and whose graph passes through the point (0, 2)
- 19. Find the interval in which $f(x) = x^2$ is decreasing

- 20. State why the function $f(x) = x^{\frac{2}{3}}$; [-1,8] does not satisfy the conditions of Mean value theorem
- 21. Express the following limit as a definite integral $\lim_{\|P\|\to 0} \sum_{k=1}^n \frac{1}{1-C_k} \Delta x_k$ where P is a partition of [2,3].
- 22. If $\int_0^3 f(z)dz = 3$, $\int_0^4 f(z)dz = 7$, and f is continuous. Find $\int_4^3 f(z)dz$.
- 23. The curve $y = ax^2 + bx + c$ passes through the point (1, 2) and is tangent to the line y = x at the origin. Find a, b, and c
- 24. The radius of a circle is increased from 2m to 2.02m. Estimate the resulting change in the area.

III Answer any six questions

(6x5 = 30 Marks)

- 25. Using $\varepsilon \delta$ definition, prove that $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$
- 26. Is there a real number that is one less than its fifth power?
- 27. Prove that if a function is differentiable at x = c, then it is continuous at x = c. Is the converse true? Justify?
- 28. Verify mean value theorem for the function $f(x) = \ln x$ on the interval [1, e]
- 29. Prove that for the curve $y = c sin \frac{x}{a}$, every point at which it meets the x axis is a point of inflexion.
- 30. Find all the asymptotes of the curve $y = 2 + \frac{\sin x}{r}$
- 31. Show that if f is continuous on [a, b], $a \ne b$ and if $\int_a^b f(x) dx = 0$, then f(x) = 0 at least once in [a, b]
- 32. Evaluate $\int_0^1 x \, dx$ using Riemann definition
- 33. Find the area of the region enclosed by the parabola $x = y^2$ and the line x = y + 2

IV Answer any two questions

(2x10 = 20 Marks)

- 34. Using the definition of limit prove that $\lim_{x \to 1} f(x) = 2$ if $f(x) = \begin{cases} 4 2x, & x < 1 \\ 6x 4, & x \ge 1 \end{cases}$
- 35. Graph the function $y = x^{\frac{5}{3}} 5x^{\frac{2}{3}}$
- 36. Use definite integral to estimate the sum of the square roots of the first n positive integers $\sqrt{1} + \sqrt{2} + \dots + \sqrt{n}$