Reg. No....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2014

(U.G.—CCSS)

Core Course-Mathematics

MM 4B 04—CALCULUS AND ANALYTIC GEOMETRY

ime: Three Hours

C 62042

- Maximum: 30 Weightage
- I. Objective Type Questions (Answer all questions):
 - 1 Write the parametric equations of the circle $x^2 + y^2 = 1$.
 - 2 Examine whether $3x^2 6xy + 3y^2 + 2x 7 = 0$ represents a parabola ellipse or hyperbola.
 - 3 Find the eccentricity of the hyperbola $9x^2 16y^2 = 144$.
 - 4 Find the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
 - 5 Find the Taylor polynomial of order zero generated by $f(x) = \sin x$ at $\alpha = \frac{\pi}{4}$.
 - 6 Define absolute convergence.
 - 7 Define an alternating series.
 - 8 Examine whether $\sum_{n=1}^{\infty} (-1)^{n+1}$ converges or diverges.
 - 9 Evaluate $\frac{d}{dt} \left(\tan h \sqrt{1+t^2} \right)$.
 - 10 Evaluate $\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x}$.
 - 11 Prove that $e^{x+ln^2} = 2e^x$.
 - 12 Evaluate $\int_{0}^{\pi/6} \tan 2x \, dx$.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

II. Short answer type questions. Answer all nine questions.

13 Evaluate
$$\int_{-\pi/2}^{\pi/2} \frac{4 \cos \theta}{3 + 2 \sin \theta} d\theta.$$

14 Find
$$k$$
 if $e = 10$.

15 Evaluate
$$\int \frac{\log_2^x}{x} dx$$
.

16 Evaluate
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
.

17 Show that $\ln x$ grows slower than x as $x \to \infty$.

18 Evaluate
$$\int_{0}^{\ln 2} 4 e^x \sin h x dx.$$

19 Examine whether the series

$$5 + \frac{2}{3} + 1 + \frac{1}{7} + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \dots + \frac{1}{k!} + \dots$$
 converges.

20 For what values of x do the series $\sum_{n=0}^{\infty} n! x^n$ converges.

21 Find
$$\frac{dy}{dx}$$
 if $y = x^x$, $x > 0$.

 $(9 \times 1 = 9 \text{ weight})$

22 Find the length of the cardioid
$$r = 1 - \cos \theta$$
.

23 Find the directrix of the parabola
$$r = \frac{25}{10 + 10 \cos \theta}$$
.

24 Graph the curve
$$r = 1 - \cos \theta$$
.

34

- 25 The co-ordinate axes are to be rotated through an angle α to produce an equation for the curve $2x^2 + \sqrt{3} xy + y^2 10 = 0$ and has no cross product term. Find α and the new equation. Identify the curve.
- 26 Find $\lim_{x\to\infty} x^{\frac{1}{x}}$.
- Using integral test show that the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \dots + \frac{1}{n^p} + \dots$ converges if p > 1 and diverges if $p \le 1$.
- 28 Find the Maclaurin series for $f(x) = \sin 3x$.

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Essay questions. Answer any two questions:
 - 29 Solve the initial value problem $e^{y} \frac{dy}{dx} = 2x, x > \sqrt{3}, y(2) = 0.$
 - 30 Find the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
 - 31 Show that the Maclaurin series for $\cos x$ converges to $\cos x$ for every value of x.

 $(2 \times 4 = 8 \text{ weightage})$